# **Salinas Valley Basin GSA**

# **Upper Valley GSP Overview**

Presented to SVBGSA Board of Directors August 12, 2021







# **Communities Dependent on Groundwater**



| Water Systems                              |    |
|--------------------------------------------|----|
| Local and State Small (2 – 14 connections) | 14 |
| Small Public<br>(15 – 199 connections)     | 9  |
| Large Public<br>(200+ connections)         | 3  |

# **Basin Setting - Topography**







#### 

## Upper Valley Chapter 6 – Water Budgets

### **Future Water Budget**

|                                                           | Model Estimate<br>2070 |
|-----------------------------------------------------------|------------------------|
| Groundwater Pumping                                       | -90,900                |
| Net Stream Exchange                                       | 73,200                 |
| Groundwater Evapotranspiration                            | -46,300                |
| Deep Percolation of precipitation and<br>irrigation water | 66,700                 |
| Net Flow from Adjacent Subbasins/Basin                    | 8,300                  |
| Net Storage Gain (+) or Loss (-)                          | 10,800                 |



7

### Future Sustainable Yield

|                                | Model<br>Estimate<br>2070 | GEMS<br>Estimate<br>2070 |
|--------------------------------|---------------------------|--------------------------|
| Fotal Subbasin<br>Pumping      | 90,900                    | 117,000                  |
| Change in<br>Storage           | 10,800                    | 0                        |
| Estimated<br>Sustainable Yield | 101,700                   | 117,000                  |
|                                |                           |                          |

SVOM likely estimates only about 76% of the pumping, according to GEMS reported data, so the SVOM estimated pumping was adjusted by that amount

GEMS change in storage set to zero because there has not been a chronic decline in groundwater storage and the model-estimated change in storage was within the model error

**USING BEST** 

AVAILABLE

DATA: GEMS

# **Groundwater Budget Summary**



- Overall there is no chronic decline in water levels and Upper Valley is in balance
- Historical and future water budgets are both averages of many years/hydrologic periods
- Current water budget is a snapshot and does not tell us much since it only views change from one year to the next
- Future water budget incorporates average climate change, but does not represent short-term climate change effects
- The water budget will be refined with future versions of the SVIHM/SVOM that have pumping estimates that better reflect observed data.

# Groundwater conditions/SMC – Groundwater Levels



# Groundwater conditions/SMC – Groundwater Levels

1. Chronic Lowering of Groundwater Levels

Measurable Objective (MO): Set to 2011 groundwater elevations.

Minimum Threshold (MT): Set to 5 feet below the lowest groundwater elevation between 2012 and 2016.

Undesirable Result: More than 15% of groundwater elevation minimum thresholds are exceeded.



Representative Monitoring Sites

Wells with groundwater levels above the MO in 2019 are circled in GREEN

Wells with groundwater levels below the MT in 2019 are circled in RED

## Groundwater conditions/SMC – Groundwater Storage

## 2. Reduction in Groundwater Storage

#### Measurable Objective (MO): Established by proxy using groundwater elevations. Set to the same as groundwater levels measurable objectives

Minimum Threshold (MT): Established by proxy using groundwater elevations. Set to the same as groundwater levels minimum thresholds

Undesirable Result: More than 15% of groundwater elevation minimum thresholds are exceeded.



# Groundwater conditions/SMC – Water Quality

# 4. Degraded Groundwater Quality

#### Measurable Objective (MO)

Zero additional exceedances of either the regulatory drinking water standards (potable supply wells) or the Basin Plan objectives (irrigation supply wells) beyond those observed in 2019 for groundwater quality constituents of concern.

> Minimum Threshold (MT) Identical to the measurable objective.

Undesirable Result:

The minimum threshold is exceeded as a direct result of projects or management actions taken as part of GSP implementation.

| Constituent of Concern<br>(COC) | Number of Wells Sampled for<br>COC | Minimum Threshold/Measurable Objective –<br>Number of Wells Exceeding Regulatory<br>Standard from latest sample |  |  |  |  |  |
|---------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| DDW Wells                       |                                    |                                                                                                                 |  |  |  |  |  |
| Boron                           | 18                                 | 2                                                                                                               |  |  |  |  |  |
| Lindane                         | 24                                 | 2                                                                                                               |  |  |  |  |  |
| Benzo(a)Pyrene                  | 22                                 | 1                                                                                                               |  |  |  |  |  |
| Cadmium                         | 39                                 | 1                                                                                                               |  |  |  |  |  |
| Dinoseb                         | 29                                 | 1                                                                                                               |  |  |  |  |  |
| Iron                            | 40                                 | 8                                                                                                               |  |  |  |  |  |
| Hexachlorobenzene               | 20                                 | 1                                                                                                               |  |  |  |  |  |
| Manganese                       | 39                                 | 6                                                                                                               |  |  |  |  |  |
| Nitrate (as nitrogen)           | 44                                 | 8                                                                                                               |  |  |  |  |  |
| Specific Conductance            | 40                                 | 5                                                                                                               |  |  |  |  |  |
| Sulfate                         | 40                                 | 4                                                                                                               |  |  |  |  |  |
| 1,2,3-Trichloropropane          | 37                                 | 4                                                                                                               |  |  |  |  |  |
| Total Dissolved Solids          | 37                                 | 7                                                                                                               |  |  |  |  |  |
| Vinyl Chloride                  | 44                                 | 1                                                                                                               |  |  |  |  |  |
|                                 | ILRP On-Farm Domestic              | Wells                                                                                                           |  |  |  |  |  |
| Chloride                        | 74                                 | 7                                                                                                               |  |  |  |  |  |
| Nitrate (as nitrogen)           | 72                                 | 30                                                                                                              |  |  |  |  |  |
| Nitrate + Nitrite               | 28                                 | 11                                                                                                              |  |  |  |  |  |
| (sum as nitrogen)               | 20                                 |                                                                                                                 |  |  |  |  |  |
| Specific Conductance            | 72                                 | 33                                                                                                              |  |  |  |  |  |
| Sulfate                         | 74                                 | 26                                                                                                              |  |  |  |  |  |
| Total Dissolved Solids          | 74                                 | 35                                                                                                              |  |  |  |  |  |
| ILRP Irrigation Wells           |                                    |                                                                                                                 |  |  |  |  |  |
| Chloride                        | 133                                | 13                                                                                                              |  |  |  |  |  |

### Groundwater conditions/SMC – Current Water Quality Exceedance Maps

4. Degraded Groundwater Quality

#### Measurable Objective (MO)

Zero additional exceedances of either the regulatory drinking water standards (potable supply wells) or the Basin Plan objectives (irrigation supply wells) beyond those observed in 2019 for groundwater quality constituents of concern.

> Minimum Threshold (MT) Identical to the measurable objective.

#### Undesirable Result:

The minimum threshold is exceeded as a direct result of projects or management actions taken as part of GSP implementation.



13

#### Groundwater conditions/SMC – Current Water Quality Exceedance Maps ILRP On-Farm Domestic **ILRP** Irrigation EXPLANATION EXPLANATION Salinas Valley Groundwater Basir Salinas Valley Groundwater Basin (101) 101 Upper Valley Aquifer Subbasin Jpper Valley Aquifer Subbasin ILRP On-Farm Domestic Wells with Nitrate as N Exceedances, 2013-2019 ILRP Irrigation Wells with Exceedence, 2013 - 2019, by Consituent of 0 ource: California State Water Board GAMA Program O CL Source: California State Water Board GAMA Program LUCIA SAN ANTONIO SAN ANTONIO RESERVOIR RESERVOIR Monterey County Monterey County San Luis Obispo County San Luis Obispo County ACIMIENTO RESERVOIR ACIMIENTO RESERVOIR

## Groundwater conditions/SMC – Subsidence

#### 5. Subsidence

Measurable Objective (MO): Zero net long-term subsidence, with no more than 0.1 foot per year of estimated land movement to account for InSAR errors

### Minimum Threshold (MT):

Zero net long-term subsidence, with no more than 0.1 foot per year of estimated land movement to account for InSAR errors

Undesirable Result: There is an exceedance of minimum thresholds for subsidence.



Negligible current subsidence Future subsidence due to groundwater conditions is unlikely

 Minimum threshold and measurable objective set at zero long-term subsidence

# Groundwater conditions/SMC – Interconnected Surface

## Water

6. Depletion of Interconnected surface water (ISW)

Measurable Objective (MO):

Established by proxy using shallow groundwater elevations observed in 2011 near locations of ISW

Minimum Threshold (MT): Established by proxy using shallow groundwater elevations observed in 2016 near locations of ISW

**Undesirable Result:** 

There is an exceedance of the minimum threshold in a shallow groundwater monitoring well used to monitor ISW.

- No interconnected surface water monitoring points yet
  - Green dots are USGS gauge and MCWRA River Series measurement site
  - Pink dots are existing wells that will be added to network
- One new well will be added upstream of conservation releases (pink star)



# Summary of Current Conditions in Relation to SMC

- Upper Valley Aquifer Subbasin has not historically been in overdraft, nor experienced chronic lowering of groundwater levels
- From 1980 to 2016, the basin was in overdraft during only 5 years
- However, there are a few areas away from the river where groundwater elevations have been declining
- Given that the Subbasin's extraction is currently close to the sustainable yield, this GSP includes a robust set of potential management actions and projects that could be undertaken if needed





Upper Valley SMC TAC

Technical committee that reviews groundwater conditions and provides science-based advice on management actions & projects to Subbasin Planning Committee.

Will consider recharge projects, demand management, and groundwater quality mitigation.

**Cost:** staffing costs plus \$10,000/yr.



**Conservation & Ag BMPs** 

Promotes agricultural best management practices (BMPs) and supports use of evapotranspiration data as an irrigation management tool for growers.

**Cost**: Approximately \$100,000 for 4 workshops, grant writing, and demonstration trials. Cost could be reduced if shared between subbasins.



#### Fallowing, Fallow Bank, & Ag Land Retirement

A voluntary program of incentives for fallowing or retiring agricultural land

Includes a fallow bank, whereby anybody fallowing land could draw against the bank to offset lost profit.

**Cost**: \$195-\$395/AF if land is fallowed, \$810-\$2,000/AF if land is retired (can be scaled to desired amount)

# MANAGEMENT ACTIONS



### **MCWRA Drought Reoperation**

Support the existing Drought Technical Advisory Committee (D-TAC), which plans reservoir releases during drought conditions.

No additional costs since already formed.



### **Reservoir Reoperation**

Collaborate with MCWRA to evaluate potential reoperation scenarios.

Could be paired with projects such as the MCWRA Interlake Tunnel and Winter Release with ASR projects.

**Cost**: approximately \$400,000 - \$500,000

### **Management Actions**



### Multi-benefit Stream Channel Improvements

Prune native vegetation and remove non-native vegetation, manage sediment, and enhance floodplains for recharge. Includes 3 components:

1. **Stream Maintenance Program**, Multi-subbasin cost of \$0.6M-\$1.0M/yr.

2. **Invasive Species Eradication**, Multi-subbasin benefits of 2,790-20,880 AF/yr., cost of \$16.5M or \$60-\$600/AF

3. Floodplain Enhancement and Recharge, benefits of 400 AF/yr. for 4 basins in Upper Valley alone, cost of \$4.5M or \$930/AF

### Managed Aquifer Recharge with Overland Flow

**Description**: Construct recharge basins for managed aquifer recharge of overland flow before it reaches streams.

**Benefits:** approximately 400 AF/yr. for 4 recharge basins; could be scaled up or down

Cost: \$4,128,000 for 4 recharge basins, or \$870/AF

Project Options Over 50 Year Planning Horizon

# **Implementation Actions**

#### **Well Registration**

• Register all production wells, including domestic wells

#### Water Quality Partnership

 Form a working group for agencies and organizations to collaborate on addressing water quality concerns.

## GEMS Expansion & Enhancement

 Update current GEMS program, by collecting groundwater extraction data from wells in areas not currently covered by GEMS and improving data collection

#### **Dry Well Notification System**

 Develop a system for well owners to notify the GSA if their wells go dry. Refer those owners to resources to assess and improve their water supplies. Form a working group if concerning patterns emerge.

# **Summary of Management Actions**

| Project/<br>Management<br>Action # | Name                                                              | Description                                                                                                                                                                                     | Project Benefits                                                                                                                                            | Quantification of Project<br>Benefits                                       | Cost                                                                                                                                             |
|------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| A1                                 | SMC Technical<br>Advisory Committee<br>(TAC)                      | Establish TAC to review<br>groundwater conditions and provide<br>advice on projects and<br>management actions                                                                                   | Potential for increased<br>groundwater elevations,<br>increased groundwater<br>storage, decreased<br>groundwater extraction,<br>protection of water quality | Dependent on specific<br>recommendations implemented                        | Staffing costs plus \$10,000 per<br>year                                                                                                         |
| A2                                 | Conservation and<br>Agricultural BMPs                             | Promote agricultural best<br>management practices (BMPs) and<br>support use of ET data as an<br>irrigation management tool for<br>growers                                                       | Better tools assist growers to<br>use water more efficiently;<br>decreased groundwater<br>extraction                                                        | Unable to quantify benefits until specific BMPs are identified and promoted | Approximately \$100,000 for 4<br>workshops, grant writing, and<br>demonstration trials. Cost<br>could be reduced if shared<br>between subbasins. |
| A3                                 | Fallowing, Fallow<br>Bank, and<br>Agricultural Land<br>Retirement | Includes voluntary fallowing, a<br>fallow bank whereby anybody<br>fallowing land could draw against<br>the bank to offset lost profit from<br>fallowing, and retirement of<br>agricultural land | Decreased groundwater<br>extraction for irrigated<br>agriculture                                                                                            | Dependent on program<br>participation                                       | \$195-\$395/AF if land is<br>fallowed<br>\$810-\$2,000/AF if land is<br>retired                                                                  |

# **Summary of Management Actions**

| Project/<br>Management<br>Action # | Name                         | Description                                                                                                                                                          | Project Benefits                                                       | Quantification of Project<br>Benefits                                               | Cost                                     |
|------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------|
| A4                                 | MCWRA Drought<br>Reoperation | Support the existing Drought<br>Technical Advisory Committee (D-<br>TAC) when it develops plans for<br>how to manage reservoir releases<br>during drought conditions | Additional regular winter<br>reservoir releases; drought<br>resilience | Unable to quantify benefits since<br>drought operations have yet to<br>be triggered | No additional costs since already formed |
| A5                                 | Reservoir<br>Reoperation     | Collaborate with MCWRA to<br>evaluate potential reoperation<br>scenarios                                                                                             | Additional regular annual reservoir releases; drought resilience       | Unable to quantify benefits until feasibility study completed                       | Approximately \$400,000 -<br>\$500,000   |

# **Summary of Potential Projects**

| Project/<br>Management<br>Action # | Name                                            | Description                                                                                                                                                                                                                                                                                 | Project Benefits                                                                                            | Quantification of Project<br>Benefits                                                                                                                                                                                                       | Cost                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B1                                 | Multi-benefit<br>Stream Channel<br>Improvements | <ul> <li>Prune native vegetation and remove non-native vegetation, manage sediment, and enhance floodplains for recharge. Includes 3 components:</li> <li>1. Stream Maintenance Program</li> <li>2. Invasive Species Eradication</li> <li>3. Floodplain Enhancement and Recharge</li> </ul> | Groundwater recharge, flood risk<br>reduction, returns streams to a<br>natural state of dynamic equilibrium | Component 1:<br>Multi-subbasin benefits not<br>quantified<br>Component 2:<br>Multi-subbasin benefits of 2,790<br>to 20,880 AF/yr. of increased<br>recharge<br>Component 3:<br>Upper Valley benefits of 400<br>AF/yr. from 4 recharge basins | <u>Component 1</u><br>Multi-subbasin Cost: \$150,000<br>for annual administration and<br>\$95,000 for occasional<br>certification; \$780,000 for the<br>first year of treatment on 650<br>acres, and \$455,000 for annual<br>retreatment of all acres<br><u>Component 2</u><br>Multi-subbasin Average Cost:<br>\$16,500,000<br>Unit Cost: \$60 to \$600/AF<br><u>Component 3</u><br>Upper Valley Cost: \$4,464,000<br>Unit Cost: \$930/AF |
| B2                                 | MAR with Overland Flow                          | Construct basins for MAR of<br>overland flow before it reaches<br>streams                                                                                                                                                                                                                   | Groundwater recharge, less<br>stormwater and erosion, more<br>regular surface temperature                   | 400 AF/yr. in increased recharge                                                                                                                                                                                                            | Capital Cost: \$4,128,000<br>Unit Cost: \$870/AF                                                                                                                                                                                                                                                                                                                                                                                          |

# **Summary of Implementation Actions**

| Project/<br>Management<br>Action # | Name                                                                                  | Description                                                                                                                                                                                               | Project Benefits                                                                     | Quantification of Project<br>Benefits | Cost                       |
|------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------|----------------------------|
| C1                                 | Well Registration                                                                     | Register all production wells, including domestic wells                                                                                                                                                   | Better informed<br>decisions, more<br>management options                             | N/A – Implementation Action           | Not estimated at this time |
| C2                                 | Groundwater<br>Extraction<br>Management System<br>(GEMS) Expansion<br>and Enhancement | Update current GEMS program, by collecting<br>groundwater extraction data from wells in areas<br>not currently covered by GEMS and improving<br>data collection                                           | Better informed decisions                                                            | N/A – Implementation Action           | Not estimated at this time |
| C3                                 | Dry Well Notification<br>System                                                       | Develop a system for well owners to notify the GSA if their wells go dry. Refer those owners to resources to assess and improve their water supplies. Form a working group if concerning patterns emerge. | Support affected well<br>owners with analysis of<br>groundwater elevation<br>decline | N/A – Implementation Action           | Not estimated at this time |
| C4                                 | Water Quality<br>Partnership                                                          | Form a working group for agencies and organizations to collaborate on addressing water quality concerns.                                                                                                  | Improve water quality                                                                | N/A – Implementation Action           | Not estimated at this time |

## **Implementation Schedule**



## **Adaptive Management**



Image source: https://reefresilience.org/management-strategies/marine-protected-areas/adaptive-management

# Questions

