Salinas Valley Basin GSA

GSP Overview

Presented to Langley Area Subbasin Committee May 5, 2021

Prepared by

Communities Dependent on Groundwater

Basin Setting -Topography

- Hilly area
- Not like the other subbasins
- Underlain by fractured granite bedrock

Hydrogeologic Conceptual Model

Water Budget

	Historical Average (WY 1980 2016)	2070 Projection		
Total Subbasin Pumping	1,242	1,400		
Change in Storage	-778	1,000		
Seawater Intrusion	0	0		
Estimated Sustainable Yield	464	2,400		

6

	Historical Average (WY 1980 2016)	2070 Projection
Total Subbasin Pumping	1,242	1,400
Change in Storage	-778	1,000
Seawater Intrusion	0	0
Estimated Sustainable Yield	464	2,400
AUXION 30,000 40,000 40,000 -0,000	WATER YEAR	Provisional data subject to charge
and Applied Irrigation Subsurface Inflows from Adjacent Subbasins/Basin Cumulative	Outflows to ubbasins/Basin	Normal

Water Budget

- Overall there is no chronic decline in water levels and Langley is roughly in balance
- Historical and future are both averages of many years/hydrologic periods
- Current is a snapshot and does not tell us much since it only views change from one year to the next
- Future change in storage is likely overestimated because it starts from a low point.
- Future water budget incorporates average climate change, but does not represent short-term climate change effects

Groundwater conditions/SMC – Groundwater Levels

	Minimum	Measurable
Monitoring Site	Threshold (ft)	Objective (ft)
	(2019 GWL)	(GWL 2010)
13S/03E-08D01	173.3	173.5
13S/03E-10N01	278.2	278.8
13S/03E-10Q01	439.0	440.0*
13S/03E-14M01	356.0	366.9
13S/03E-15P01	89.8*	90.6
13S/03E-16J01	46.3	48.1
13S/03E-17B01	163.3*	167.3
13S/03E-17F02	-41.4	-37.5
13S/03E-19H01	1.9	2.5*
13S/03E-20B02	104.4	106.5
13S/03E-20P01	31.5*	77.3
13S/03E-22F01	84.4	100.6
13S/03E-29A01	-61.2	-58.2
13S/03E-29K01	58.8	60.0
13S/03E-32H01	-47.0	-38.0
13S/03E-33T50	-50.0	-45.0

MT/MO are very close together for most wells.

5

Groundwater conditions/SMC – Seawater Intrusion

- No seawater intrusion in the subbasin
- Minimum threshold is at the subbasin boundary

Groundwater conditions/SMC – Water Quality Exceedance Maps

Groundwater conditions/SMC – Water Quality

Constituent of Concern (COC)	Number of Wells Sampled for COC	Minimum Threshold/Measurable Objective Number of Wells Exceeding Regulatory Standard from latest sample
	DDW Wells	
Arsenic	86	3
Di(2 ethylhexyl) phthalate	56	1
Benzo(a)Pyrene	56	1
Chloride	76	2
1,2 Dibromo 3 chloropropane	33	6
Dinoseb	87	8
Iron	78	17
Hexachlorobenzene	31	1
Heptachlor	31	2
Manganese	76	15
Methyl tert butyl ether (MTBE)	85	1
Nitrate (as nitrogen)	164	14
Specific Conductance	88	2
1,2,4 Trichlorobenzene	84	1
1,2,3 Trichloropropane	89	6
Total Dissolved Solids	76	2
Vinyl Chloride	188	88
	ILRP On Farm Domestic	Wells
Iron	1	1
Manganese	1	1
	ILRP Irrigation Well	s
Manganese	9	1

Groundwater conditions/SMC – Subsidence

Negligible current subsidence

Future subsidence due to groundwater conditions is unlikely

Minimum threshold and measurable objective set at zero long-term subsidence

12

Groundwater conditions/SMC – Interconnected Surface Water

- No interconnected surface water monitoring points yet
- One shallow well will be added on Gabilan Creek (orange star) and will be paired with USGS gauge in Eastside (green star)
- Minimum thresholds based on 2019 shallow groundwater elevations

Projects & Management Actions

RECHARGE PROJECTS DEMAND MANAGEMENT Decentralized Residential Recharge Projects Pumping Allocations and Controls Decentralized Stormwater Recharge MAR Overland Flow Surface Water Diversion from Gabilan Creek **Projects &** Management Actions **CROSS BOUNDARY PROJECTS IMPLEMENTATION ACTIONS** Floodplain Enhancement and Recharge Well Registration CSIP Expansion GEMS Expansion Local Groundwater Elevation Trigger Domestic Water Partnership

January Langley Projects & Management Actions Road Map 2022 **IMPLEMENTATION ACTIONS** ata collection Year 1 PUMPING ALLOCATIONS AND CONTROL Outreach and Ingage key stakeholder gencies and engagement takeholders' xpand GEMS Establish allocation structure egin well Year 2 **PROJECTS** Outreach to landowners stablish Identify suitable sites ARY CTS omestic Water If/when other Develop pumping and do site analysis subbasins move Partnership and controls if needed ocal Groundwater \triangleleft forward with these ROJE Ievation Trigger BOUND **CSIP** expansion Year 3-5 ECHARGE Permitting and ES floodplain lse data for enhancement and Apply for roject decision grants/establish recharge ٩ haking funding mechanism Work to ensure **CROSS-**Langley interests Itimately use are accounted for in ata to document design and ustainability and Year 6-2 implementation of ell the story project 10 15

Projects & Management Actions: Timeline

