Salinas Valley Basin Groundwater Sustainability Agency Seawater Intrusion Group (SWIG)

MONTEREY COUNTY WATER RECYCLING PROJECTS PAST, PRESENT, AND FUTURE

September 28, 2020

Monterey Wastewater Reclamation Study for Agriculture 1976-1987

MC Environmental Health, Planning, Public Works, & MCWRA, CCC, Ag, Grower-Shipper, CA Artichoke and Vegetable Growers, Univ. of CA, M1W, RWQCB, DWR, DFA, EPA, CA Dept. of Health Services, MBAG, etc.

Past – When Were the Projects Built?

1989

 Regional Treatment Plant (RTP): primary and secondary treatment of wastewater discharged to the ocean outfall

1998

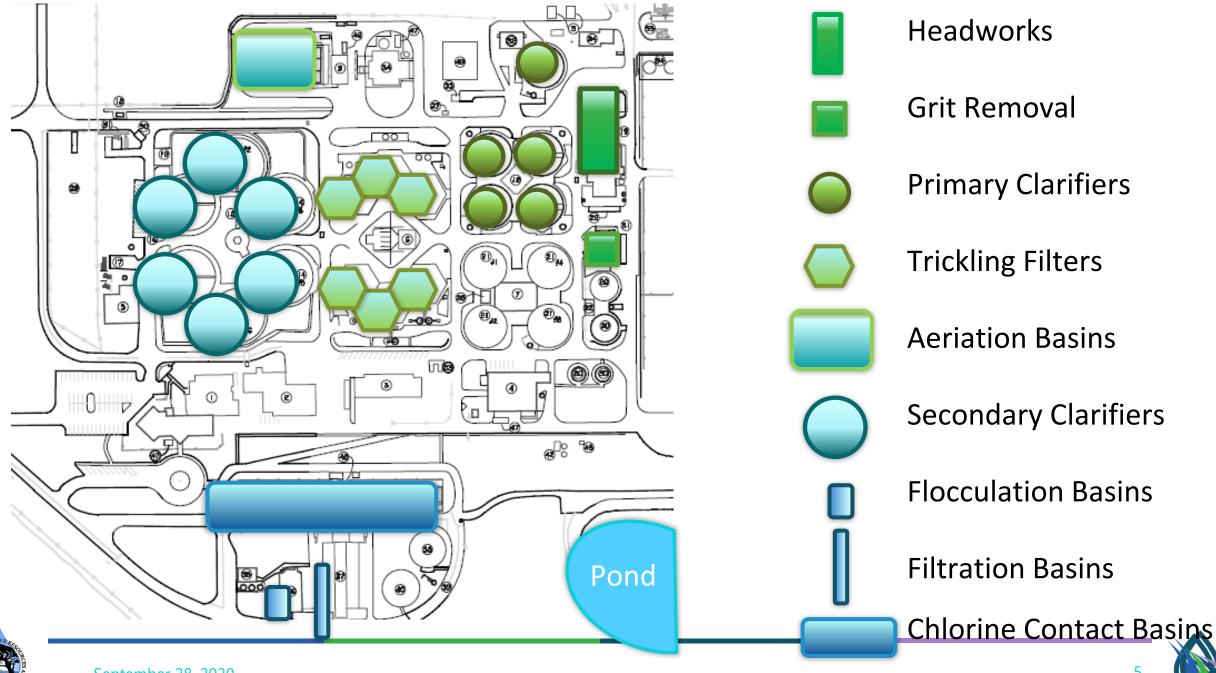
- Salinas Valley Reclamation Plant (SVRP): tertiary treatment of wastewater for agricultural irrigation use
- Supplemental Wells: wells to meet irrigation demand when plant is not operating (back up plan)
- Castroville Seawater Intrusion Project (CSIP) distribution pipeline in Zone 2B to deliver the recycled water and well water for irrigation

2010

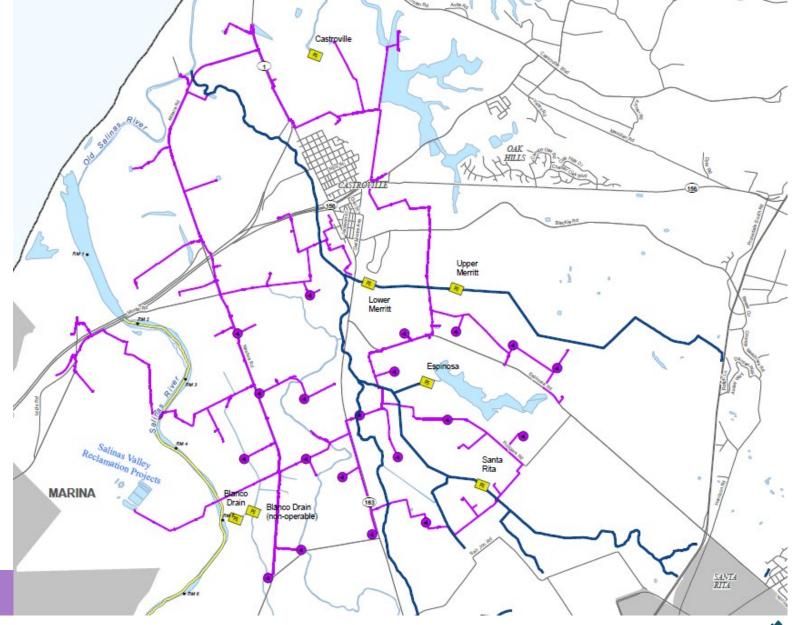
 Salinas River Diversion Facility (SRDF): seasonal diversion of river water to supplement recycled water

2019

Rec Ditch and Blanco Drain diversion facilities to augment wastewater



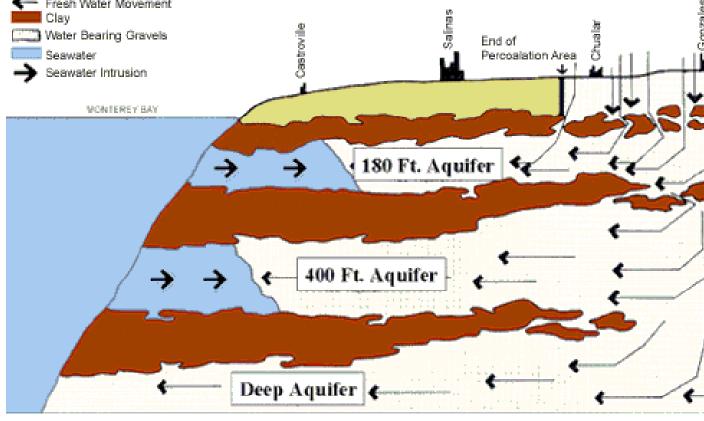
September 28, 2020



DISTRIBUTION SYSTEM Castroville Seawater Intrusion Project (CSIP)

- 48 miles of pipeline
- 21 supplemental wells
- 222 parcels
- 112 turnouts
- 9 monitoring stations
- 3 booster pumps stations
- \$37M Capital
- \$1.7M Annual O&M (excludes loan payment)

12,080 acres


September 28, 2020

Past – Why Were the Projects Built?

■ CSIP and the SVRP became operational in 1998 to address seawater intrusion occurring near the coast of the Salinas River Valley.

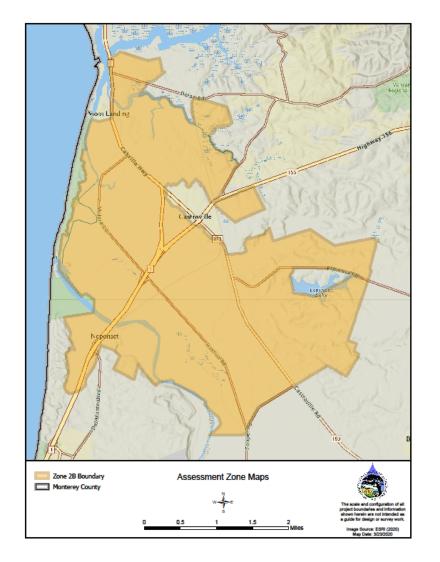
□ Fresh Water Movement □ □

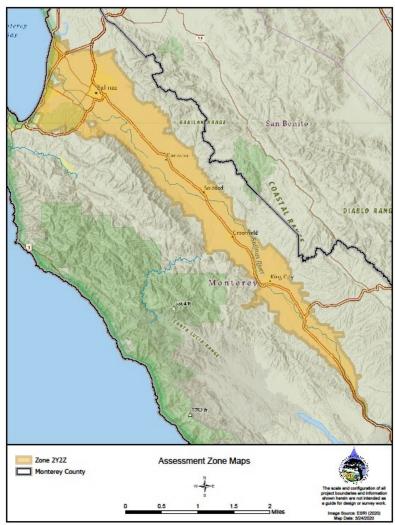
 Purpose of CSIP & SVRP was to reduce the rate of seawater intrusion into the Pressure 400 (P400) Aquifer by 50%.

Past – Who Paid For it?

Annual Assessments

- CSIP: Debt Service and O&M
 - MCWRA Assessment Zones 2B and 2Y \$4.1M/annually
- SVRP: Debt Service and O&M
 - MCWRA Assessment Zones 2B and 2Z \$4.2M/annually
- SRDF: Debt Service Only
 - a portion of MCWRA Assessment Zone 2C –\$1M/annually


Operational Costs


 Water Delivery fees paid by users (Zone 2B) based on actual water use - \$1.8M/annually

Past – Who Paid For it?

Past - What could have been done better?

- Implement a Robust Water Order Program from the start
 - Electronic system to track availability
 - Scheduling and approvals based on availability
 - Monitoring & enforcement of water use
- Reduce impacts from Value engineering
 - Pipe size reduced
 - Valves and meters downsized
 - Pond size
- Eliminate single points of failure
 - e.g. chlorine scrubber, backup power limited
- Allow for winter operations
 - When demand is below 5 MGD

Present – MCWRA and M1W Roles

Long-term Agreement between MCWRA and M1W (12/31/2045)

- Estimated Cost, Financing, and Construction of the New Source Water Facilities
- Ownership, Operation and Maintenance of CSIP, SRVP, SRDF & New Source Water
- Allocations and Delivery of Recycled Water
- Payments, Accounting System, Reports, Indemnification, Insurance
- Repair & Modification of Facilities
- Other

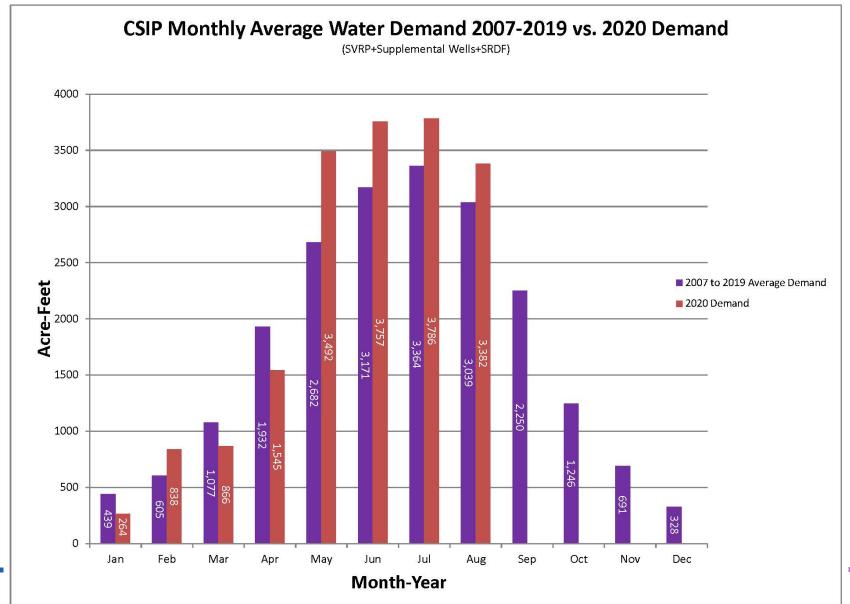
Present – MCWRA and M1W Roles

	Ownership	O&M
CSIP	MCWRA	MCWRA/M1W
SVRP	M1W	M1W
SRDF	MCWRA	M1W
Rec Ditch	M1W	M1W
Blanco Drain	M1W	M1W
RTP	M1W	M1W

	Wastewater in 2001 boundary	Wastewater out 2001 boundary	Supp. wells	SRDF	New Sources	Other sources
M1W	650 AF in summer and any unused	½- Flow			100% then 4320 AFY if MCWRA in	Separate agreements
MCWRA		½-Flow	100%	100%	Remaining available water if buy in	
MCWD	All inflow, limited to 300 AF in summer					

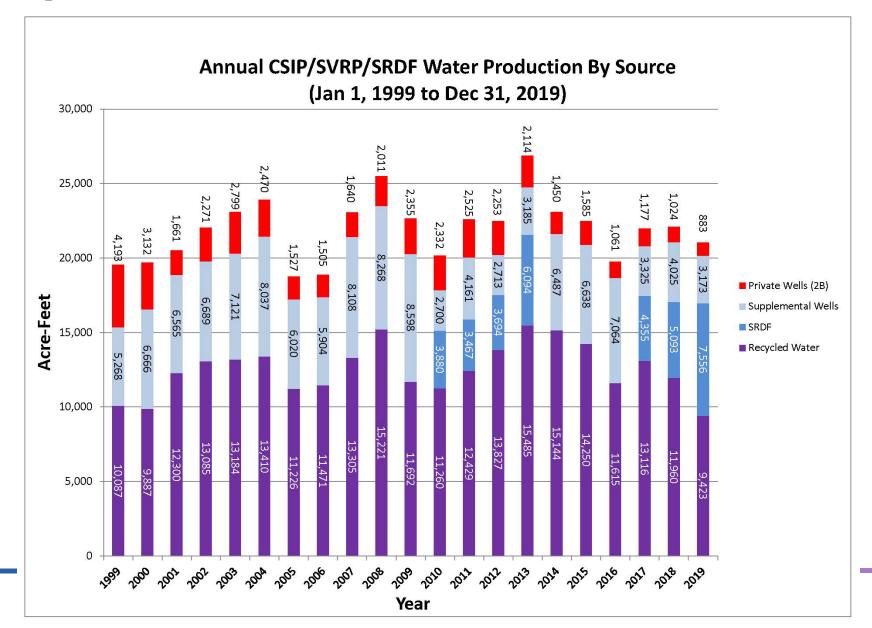
Present – Physical System

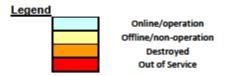
- 22 years old and some components nearing end of life
- What needs to be fixed (some examples)
 - Replace aging infrastructure e.g. valves, concrete
 - Upsize identified valves and meters that are restricting flows
 - Restriction of flow off the hill requires well use
 - Flow control valves at each site (grower owned and maintained)
 - Redundant equipment to reduce plant downtime
- How does it get paid for water users within Zone 2B pay for operations and maintenance

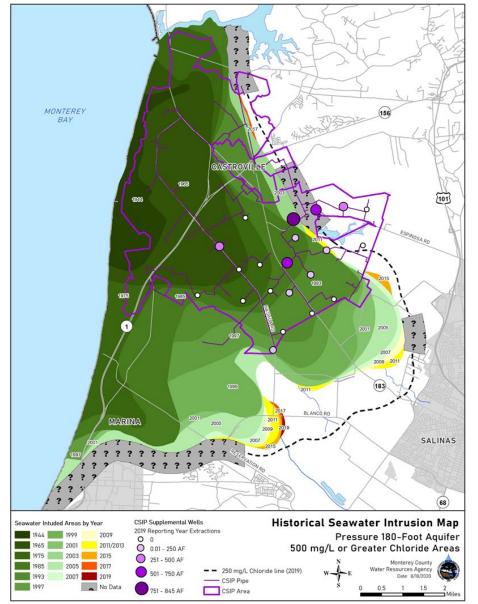

- What's working and what isn't
 - System is meeting current grower demand
 - Revenues have not kept up with all necessary expenditures
 - Plant inflow did not increase as anticipated, it has decreased
- What needs to get fixed
 - Reduce peak demands to help deliver more water in total e.g. 24-hour irrigation
 - Exercise valves to maintain function
 - Address periodic system pressure issues

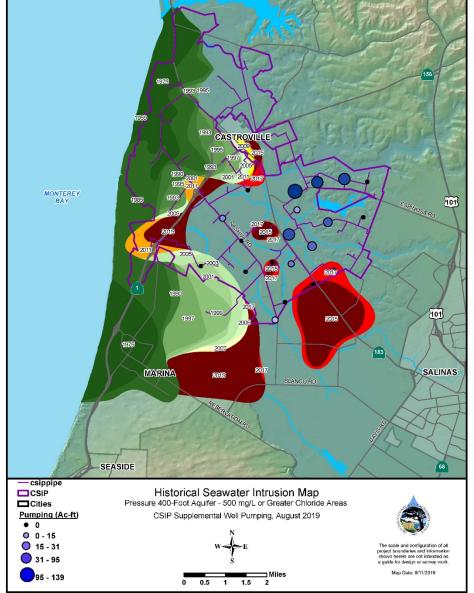
DOES IT WORK

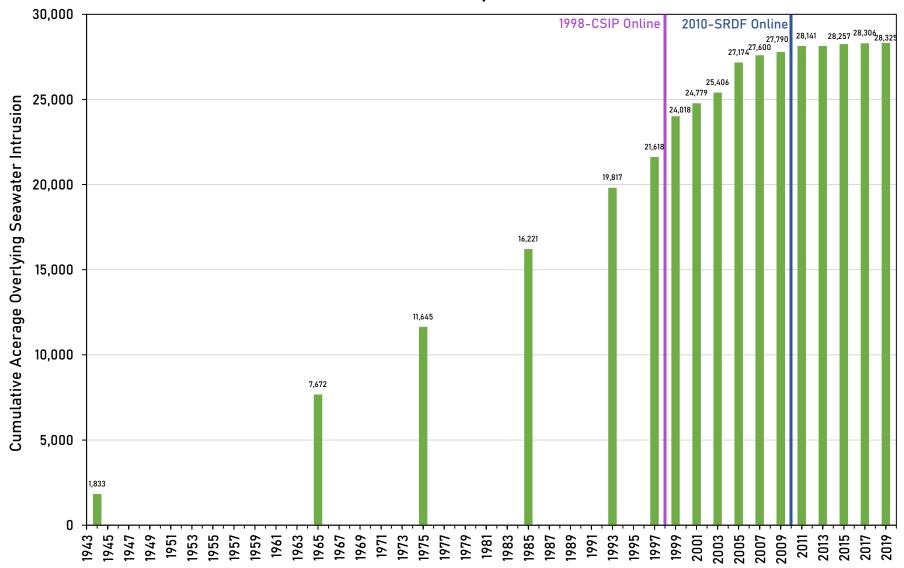
- Yes, it is effective but outdated
- There are significant seasonal and daily peaks that could be addressed

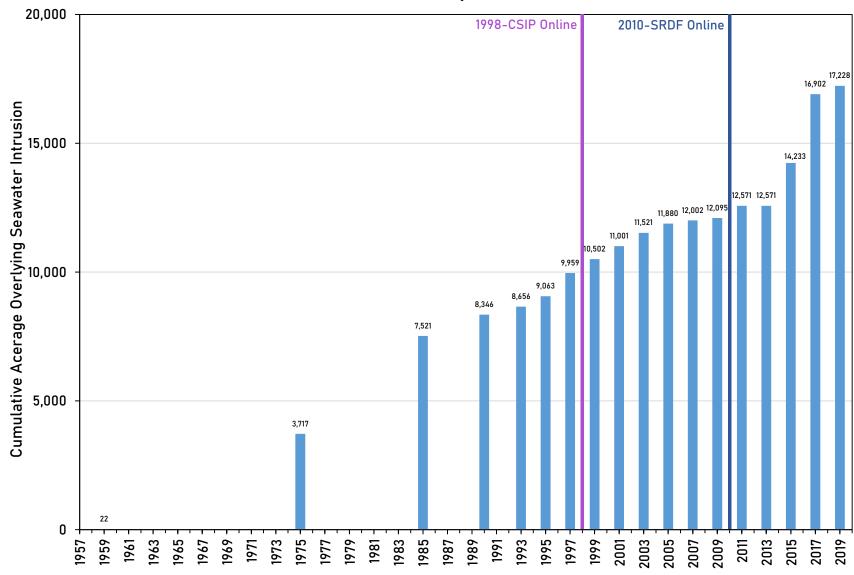





CSIP Supplemental Well Status (as of 08/26/2020)


					Design	Actual	Actual		
	Well No.	Available	Out	Well No.	GPM	GPM	ac*ft/day	CI (mg/L)	Comments
1	02A2	. ✓		02A2	2300	2200	9.7	106	
2	02C3	√		02C3	2000	1700	7.5	210	
3	03H1	. ✓		03H1	4000	3800	16.8	229	
4	03R50	√		03R50	1700	1100	4.9	81	250 hp in for repair. Using spare 200hp (15C2)
5	10H	. ✓		10H	3500	2900	12.8	106	
6	11B1	√		11B1	1700	1400	6.2	55	
7	11M3	. ✓		11M3	1500	1400	6.2	48	
8	15A1	√		15A1	1600	1400	6.2	48	
9	22L	V		22L	2000	1900	0	251	Worn Pump, Rising Chlorides- Limited Pumping
10	NEW 2	٧		NEW 2	4800	2300	10.2	119	1
									-
-									
11	NEW 1		√	NEW 1	4800				Destroyed June 2012
11 12			√	NEW 1 New 4	4800 4800				Destroyed June 2012 Destroyed July 25, 2017
	New 4								*
12	New 4 14L3		4	New 4	4800				Destroyed July 25, 2017
12 13	New 4 14L3		√ √	New 4 14L3	4800 2800			889	Destroyed July 25, 2017 Destroyed July 28, 2017
12 13 14	New 4 14L3 NEW 5 15C2		V V	New 4 14L3 NEW 5	4800 2800 4800			889 291	Destroyed July 25, 2017 Destroyed July 26, 2017 Destroyed October 16, 2019
12 13 14 15	New 4 14L3 NEW 5 15C2 22B1		V V	New 4 14L3 NEW 5 15C2	4800 2800 4800 2200				Destroyed July 25, 2017 Destroyed July 26, 2017 Destroyed October 16, 2019 Destroyed November 7, 2019
12 13 14 15	New 4 14L3 NEW 5 15C2 22B1		V V V	New 4 14L3 NEW 5 15C2 22B1	4800 2800 4800 2200 3000				Destroyed July 25, 2017 Destroyed July 28, 2017 Destroyed October 16, 2019 Destroyed November 7, 2019 Destroyed November 8, 2019
12 13 14 15	New 4 14L3 NEW 5 15C2 22B1		V V V	New 4 14L3 NEW 5 15C2 22B1	4800 2800 4800 2200 3000				Destroyed July 25, 2017 Destroyed July 26, 2017 Destroyed October 16, 2019 Destroyed November 7, 2019 Destroyed November 8, 2019 Destroyed August 21, 2020
12 13 14 15 16 17	New 4 14L3 NEW 5 15C2 22B1 10E2		V V V V	New 4 14L3 NEW 5 15C2 22B1 10E2	4800 2800 4800 2200 3000 2700			291	Destroyed July 25, 2017 Destroyed July 26, 2017 Destroyed October 16, 2019 Destroyed November 7, 2019 Destroyed November 8, 2019 Destroyed August 21, 2020 Low production (< 350 gpm); Cavitation & Sandi
12 13 14 15 16 17	New 4 14L3 NEW 5 15C2 22B1 10E2		4 4 4 4	New 4 14L3 NEW 5 15C2 22B1 10E2	4800 2800 4800 2200 3000 2700			291	Destroyed July 25, 2017 Destroyed July 26, 2017 Destroyed October 16, 2019 Destroyed November 7, 2019 Destroyed November 8, 2019 Destroyed August 21, 2020 Low production (< 350 gpm); Cavitation & Sandi Out of service due to poor regional water quality
12 13 14 15 16 17	New 4 14L3 NEW 5 15C2 22B1 10E2 01C1 01P50		V V V V V V V V V V V V V V V V V V V	New 4 14L3 NEW 5 15C2 22B1 10E2	4800 2800 4800 2200 3000 2700 2400 2400			291	Destroyed July 25, 2017 Destroyed July 26, 2017 Destroyed October 16, 2019 Destroyed November 7, 2019 Destroyed November 8, 2019




Acreage Overlying the 500 mg/L Chloride Contour 180-Foot Aquifer

Acreage Overlying the 500 mg/L Chloride Contour 400-Foot Aquifer

Future

- Can it be expanded?
 - Yes
- What would it take
 - Detailed system analysis
 - Comprehensive Master Plan, Facilities Study, condition assessment
 - Policy/Ordinances
 - Annexation Ordinance, Scheduling Policy
 - Design ordinance, annexation policy, stakeholder buy-in, loan modification, etc.
 - Stakeholder Buy in and Approve Funding
- How do we get more funding
 - Annexation fee
 - Proposition 218
 - State & Federal Grants
 - Increase delivery charges

Future

- What would optimizing it look like
 - Physically
 - Add redundancies to decrease plant shutdowns
 - Increase storage
 - Operationally.
 - Reduce discharges to ocean
- What needs to be change operationally
 - Automation
 - Remote monitoring
 - Maintain higher pond elevation
- How do we get more water
 - Expand to areas with good quality groundwater
 - Additional source waters to RTP
 - Purchase other water
 - Store water when there is excess
 - River diversions in the winter
 - Build project using other water rights

Future Improvements

- Options to improve groundwater quality
 - Reduce vertical migration of seawater intrusion through well destruction
 - Reduce groundwater pumping
- Options to reduce pumping:
 - Schedule water deliveries (reduce peak demands)
 - Optimize storage pond operations to reduce pressure issues
 - Increase storage out in the system
 - Increase use of recycled water in off-peak season in exchange for reduction in groundwater pumping (drought reserve)
 - Add new sources of water

QUESTIONS?

