Draft Chapter 7

Salinas Valley Basin Integrated Sustainability Plan

Prepared for: SVBGSA

May 2019

Table of Contents

7	MONITOR	ING NETWORKS	1
7.1	Introducti	on	1
	7.1.1	Monitoring Objectives	1
	7.1.2	Approach to Monitoring Networks	1
	7.1.3	Management Areas	2
7.2	Groundwa	ater Level Monitoring Network	2
	7.2.1	Relevance of CASGEM Program	
	7.2.2	Current CASGEM Network	
	7.2.3	Groundwater Level Monitoring Protocols	
	7.2.4	Groundwater Level Monitoring Network Data Gaps	8
7.3	Groundwa	ater Storage Monitoring Network	. 11
	7.1.1 Gr	oundwater Storage Monitoring Data Gaps	. 11
	7.1.2 Gr	oundwater Storage Monitoring Protocols	. 12
7.2 S	eawater In	trusion Monitoring Network	. 12
	7.3.1	Seawater Intrusion Monitoring Protocols	.14
	7.3.2	Seawater Intrusion Monitoring Data Gaps	.14
7.4	Water Qu	ality Monitoring Network	. 14
	7.4.1	Groundwater Quality Monitoring Data Gaps	. 18
	7.4.2	Groundwater Quality Monitoring Protocols	. 18
7.5	Land Sub	sidence Monitoring Network	. 18
7.6	Interconn	ected Surface Water Monitoring Network	. 18
	7.6.1	Interconnected Surface Water Monitoring Data Gaps	. 21
	7.6.2	Interconnected Surface Water Monitoring Protocols	. 23
7.7	Represen	tative Monitoring Sites	. 23
7.8	Data Man	agement System and Data Reporting	. 23
7.9	Reference	es	. 26

Figures

Figure 7-1. Existing CASGEM Groundwater Level Monitoring Wells	7
Figure 7-2. Proposed Locations for Additional Groundwater Level Monitoring Wells	10
Figure 7-3. Seawater Intrusion Monitoring Wells	13
Figure 7-4 Locations of Wells in the Groundwater Quality Monitoring Network for ILRP Wells	17
Figure 7-5. Stream Gaging Stations	20
Figure 7-6. Locations of Proposed Shallow Groundwater Monitoring Wells	22

Tables

Table 7-1. CASGEM Well Network Summary	3
Table 7-2. Existing CASGEM Monitoring Well Network	4
Table 7-3. Datasets Available for Use in Populating the DMS	25

Appendices

Appendix A. Monitoring Procedures from MCSRA CASGEM Monitoring Plan
Appendix B. Monterey County Quality Assurance Project Plan (QAPP)
Appendix C. Contouring Protocols for Chloride Isocontour Maps
Appendix D. Department of Drinking Water Supply Wells for Water Quality Monitoring Network
Appendix E. Central Coast Ag Order 3.0 Monitoring and Reporting Program

7 MONITORING NETWORKS

This chapter describes the monitoring networks that will be used to monitor groundwater conditions and assess the sustainable management criteria (SMCs) for the Salinas Valley Groundwater Basin ISP. This description of the monitoring network has been prepared in accordance with the SGMA emergency regulations §354.32 to include monitoring objectives, monitoring protocols, and data reporting requirements.

7.1 Introduction

7.1.1 Monitoring Objectives

SGMA requires monitoring networks be developed to promote the collection of data of sufficient quality, frequency, and distribution to characterize groundwater and related surface water conditions in the Basin and to evaluate changing conditions that occur as the Plan(s) are implemented. The monitoring network is intended to:

- Monitor changes in groundwater conditions relative to measurable objectives and minimum thresholds, and thereby demonstrate progress toward achieving measurable objectives.
- Monitor impacts to the beneficial uses or users of groundwater.
- Quantify annual changes in water budget components.

The measurable objectives and minimum thresholds monitored by the networks are described in Chapter 8: Sustainable Management Criteria.

7.1.2 Approach to Monitoring Networks

Monitoring networks are developed for each of the six sustainability indicators that are relevant to the ISP area:

- Chronic lowering of groundwater levels
- Reduction in groundwater storage
- Seawater intrusion
- Degraded water quality
- Land subsidence
- Depletion of interconnected surface water

The regulations allow the SVBGSA to use existing monitoring sites for the monitoring network; therefore, the monitoring networks presented in this chapter are primarily based on existing monitoring sites. The monitoring networks are limited to data points and locations that are publicly available and not confidential.

For some sustainability indicators it is necessary to expand the existing monitoring systems. Data gaps are identified for each monitoring system; filling these data gaps and developing more extensive and complete monitoring systems will improve the SVBGSA's ability to demonstrate sustainability and refine the existing conceptual and numerical hydrogeologic models.

The monitoring networks proposed in this ISP will be implemented through the GSPs developed for each of the six subbasins. The plans for new monitoring sites or monitoring programs are developed to a general level of detail in this ISP; additional details and specificity will be developed during preparation of the GSPs.

7.1.3 Management Areas

The regulations require that if management areas are established, the quantity and density of monitoring sites in those areas shall be sufficient to evaluate conditions of the basin setting and sustainable management criteria specific to that area. At this time, management areas have not been defined for the Salinas Valley Groundwater Basin.

7.2 Groundwater Level Monitoring Network

The sustainability indicator for Chronic Lowering of Groundwater Levels is evaluated by monitoring groundwater levels in designated monitoring wells. The regulations require a network of monitoring wells sufficient to demonstrate groundwater occurrence, flow directions, and hydraulic gradients between principal aquifers and surface water features.

7.2.1 Relevance of CASGEM Program

Five years prior to the SGMA legislation, in November 2009, the State amended the Water Code to mandate statewide groundwater elevation monitoring through collaboration between local agencies and DWR. In response, DWR created the California Statewide Groundwater Elevation Monitoring (CASGEM) program wherein local agencies upload available water elevation data and DWR maintains the database in a format that is readily and widely available to the public. The goal of the CASGEM program is to collect and store groundwater level data such that current and future groundwater management programs can draw upon the data to assess seasonal and long-term trends in local groundwater conditions.

Therefore, the CASGEM program was specifically intended to serve the purpose that is now required of the groundwater level monitoring network under SGMA. Because a CASGEM

network has already been established for the Salinas Valley Basin, this ISP and the subsequent GSPs will base the network for monitoring chronic lowering of groundwater levels on the existing CASGEM network.

In 2015, MCWRA prepared a CASGEM Monitoring Plan (MCWRA, 2015) that covers significant portions of the six subbasins of this ISP. MCWRA also voluntarily registered as the monitoring agency for CASGEM in the Salinas Valley. If one or more GSPs proposes an expansion of the CASGEM monitoring network, the additional CASGEM wells will be incorporated into the existing network and data reported to the DWR CASGEM program.

7.2.2 Current CASGEM Network

The current CASGEM monitoring network consists of 64 wells within the six subbasins of this ISP. As a voluntary program, MCWRA based the CASGEM network primarily on wells that were owned and monitored by MCWRA prior to initiation of the CASGEM program. The existing network is not uniformly distributed throughout the subbasins, but is denser in areas where MCWRA has historically monitored the northern portion of the Basin.

Table 7-1 summarizes the distribution of CASGEM wells by subbasin and by well depth. The wells in the water level monitoring network are listed in Table 7-2 and shown on Figure 7-1. The distribution of wells in the existing network and the need for additional wells is discussed below in Section 7.2.4.

	Well Depth (feet below ground surface)										
Basin/Subbasin	Total	0-200	201-400	401-600	601-800	801-1000	>1000	Voluntary ¹			
Salinas Valley Basin	64	10	23	8	7	2	3	11			
180/400-Foot Aquifer Subbasin	23	3	12	5	1	0	1	1			
Eastside Aquifer Subbasin	8	0	2	0	4	1	1	0			
Monterey Subbasin	15	1	1	1	2	1	1	8			
Langley Area Subbasin	3	0	2	1	0	0	0	0			
Forebay Aquifer Subbasin	11	4	4	1	0	0	0	2			
Upper Valley Aquifer Subbasin	4	2	2	0	0	0	0	0			
¹ Voluntary well locations are available, bu	it total well	depth is confid	dential								

Table 7-1. CASGEM Well Network Summary

State Well Number	CASGEM Well Number	Local Well Designation	Type of Well	Well Use	Total Well Depth	Latitude (NAD 83)	Longitude (NAD 83)	Period of Record (years)
			/400-Foot Aquife	er Subbasin				
17S05E06C002M	364883N1214684W001	GZWA21202	CASGEM	Observation	115	36.488323	-121.468395	12.7
17S05E06C001M	364883N1214684W002	GZWB21201	CASGEM	Observation	300	36.488323	-121.468404	13.0
16S04E15D001M	365444N1215220W001	BRME10389	CASGEM	Unknown	384	36.544406	-121.522009	4.4
16S04E08H004M	365550N1215466W001	CHEA21208	CASGEM	Observation	140	36.555022	-121.546557	13.0
15S03E16M001M	366250N1216532W001	1359	Voluntary	Irrigation	Confidential	36.624978	-121.653213	3.4
15S03E17M001M	366265N1216692W001	1480	CASGEM	Irrigation	271	36.62654	-121.669184	3.4
15S03E16F002M	366292N1216474W001	1862	CASGEM	Irrigation	592	36.629202	-121.647449	3.4
14S03E30G008M	366869N1216785W001	MKTC22650	CASGEM	Observation	293	36.68688	-121.678517	14.7
14S02E26H001M	366889N1217079W001	AMST22651	CASGEM	Observation	339	36.688875	-121.707934	13.0
14S02E27A001M	366933N1217294W001	MCFD22632	CASGEM	Observation	293	36.693296	-121.729435	13.0
14S03E18C002M	367207N1216805W001	BORB15010	CASGEM	Observation	395	36.720735	-121.680531	14.7
14S02E12Q001M	367221N1216965W001	1707	CASGEM	Residential	619	36.722108	-121.696473	3.4
14S02E08M002M	367275N1217803W001	239	CASGEM	Irrigation	500	36.727523	-121.78025	3.4
14S02E12B002M	367343N1216958W001	RODA14455	CASGEM	Observation	265	36.734316	-121.69585	13.0
14S02E12B003M	367343N1216959W001	RODB14456	CASGEM	Observation	390	36.734282	-121.695864	15.0
14S02E03F004M	367454N1217393W001	ESPA22636	CASGEM	Observation	205	36.74539	-121.739313	14.7
14S02E03F003M	367455N1217395W001	ESPB22635	CASGEM	Observation	455	36.74548	-121.739492	14.7
13S02E32A002M	367653N1217636W001	10161	CASGEM	Irrigation	600	36.765339	-121.763589	3.4
13S02E19Q003M	367808N1217847W001	75	CASGEM	Irrigation	1562	36.780798	-121.784687	3.4
13S02E21Q001M	367816N1217514W001	SELA22633	CASGEM	Observation	157	36.781644	-121.751387	12.7
13S02E21N001M	367847N1217618W001	2432	CASGEM	Irrigation	550	36.784731	-121.761804	3.4
16S04E08H003M	365550N1215465W001	CHEB21205	CASGEM	Observation	295	36.555032	-121.546545	10.7
14S03E18C001M	367207N1216806W001	BORA15009	CASGEM	Observation	225	36.720721	-121.680556	13.0
		E	astside Aquifer	Subbasin				
16S05E27G001M	365122N1214080W001	2519	CASGEM	Irrigation	1122	36.512243	-121.407957	3.4
16S05E28D001M	365167N1214328W001	871	CASGEM	Irrigation	832	36.516669	-121.432772	3.4

Table 7-2. Existing CASGEM Monitoring Well Network

State Well Number	Number Number Design		Type of Well	Well Use	Total Well Depth	Latitude (NAD 83)	Longitude (NAD 83)	Period of Record (years)
15S04E06R001M	366517N1215669W001	1726	CASGEM	Irrigation	786	36.651722	-121.566933	3.4
14S04E31Q002M	366661N1215694W001	806	CASGEM	Irrigation	710	36.666105	-121.569391	3.4
14S03E27B001M	366906N1216242W001 15126		CASGEM	Irrigation	348	36.690611	-121.6242	3.4
14S03E25C002M	366927N1215940W001 FALA22619		CASGEM	Observation	370	36.692725	-121.594032	13.0
14S03E25C001M	366928N1215941W001	FALB22618	CASGEM	Observation	680	36.692754	-121.594058	13.0
14S03E15H003M	367174N1216222W001	752	CASGEM	Irrigation	784	36.717412	-121.622173	3.4
		I	Forebay Aquifer	Subbasin				
18S06E35F001M	363259N1212863W001	THNB18502	CASGEM	Observation	258	36.325857	-121.286318	12.7
18S06E25F001M	363359N1212745W001	1495	Voluntary	Irrigation	Confidential	36.335895	-121.274486	3.4
18S06E24M001M	363485N1212755W001	HUDB18467	CASGEM	Observation	253	36.348507	-121.27555	14.0
18S06E24M002M	363485N1212756W001	HUDA21067	CASGEM	Observation	130	36.348475	-121.275639	14.0
18S06E22B004M	5E22B004M 363562N1213033W001 LosCochesA21314		CASGEM	Observation	95	36.356206	-121.30326	15.0
18S06E22B003M	06E22B003M 363562N1213033W002 LosCochesB21066		CASGEM	Observation	280	36.356178	-121.303292	15.0
18S06E22B002M	E22B002M 363562N1213033W003 LosCochesC18449		CASGEM	Observation	590	36.356198	-121.303324	15.0
17S06E33R002M	5E33R002M 364047N1213162W001 VidaShallow21210		CASGEM	Observation	120	36.404723	-121.316163	15.0
17S06E33R001M	06E33R001M 364048N1213162W001 VidaDeep21209		CASGEM	Observation	260	36.404756	-121.316169	15.0
17S06E19D001M	S06E19D001M 364424N1213682W001 1485		Voluntary	Irrigation	Confidential	36.442444	-121.368184	3.4
18S06E35F002M	8S06E35F002M 363258N1212864W001 THNA2		CASGEM	Observation	120	36.325833	-121.286378	12.7
			Upper Valley Su	ubbasin				
23S10E03H001M	359593N1208715W001	SArdoN19447	CASGEM	Observation	142	35.95928	-120.871501	4.4
20S08E14K001M	361903N1210713W001	1735	CASGEM	Irrigation	236	36.190341	-121.071326	3.4
19S08E19K003M	362614N1211432W001	1379	CASGEM	Irrigation	212	36.261416	-121.143185	3.4
23S10E14D001M	359362N1208661W001	SArdoS19450	CASGEM	Observation	142	35.93624	-120.866068	14.0
			Langley Area Su	ubbasin				
13S03E22F001M	367906N1216267W001	13950	CASGEM	Residential	334	36.79057	-121.626689	3.4
13S03E15P001M	367953N1216300W001	13572	CASGEM	Residential	430	36.795257	-121.630019	3.4
13S03E16J001M	368011N1216412W001	13625	CASGEM	Residential	252	36.801055	-121.641165	3.4
			Monterey Sub	basin				
	365608N1217494W001	Robley Deep (South)	Voluntary	Observation	Confidential	36.5608	-121.74943	2.2

State Well Number	nber Number Designation		Type of Well	Well Use	Total Well Depth	Latitude (NAD 83)	Longitude (NAD 83)	Period of Record (years)
	365608N1217494W002	Robley Shallow (North)	Voluntary	Observation	Confidential	36.56081	-121.74942	2.2
16S02E01M001M	01M001M 365680N1217073W001 16797		CASGEM	Residential	294	36.568031	-121.707315	2.7
16S02E02G001M	502E02G001M 365705N1217134W001 16820		CASGEM	Residential	448	36.570536	-121.713413	3.0
	365729N1217447W001 FO-05-Deep		Voluntary	Observation	Confidential	36.5729	-121.74466	2.2
	365729N1217447W002 FO-05-Shallow		Voluntary	Observation	Confidential	36.57291	-121.74467	2.2
	366363N1218018W001 MPWMD #FO-08-Shallow 366466N1218079W001 MPWMD #FO-10-Shallow 366466N1218079W002 MPWMD #FO-10-Deep 366474N1217847W001 FO-11-Deep		CASGEM	Observation	790	36.636284	-121.801805	6.5
			CASGEM	Observation	650	36.646589	-121.807865	6.5
			CASGEM	Observation	1420	36.646589	-121.807864	6.5
			Voluntary	Observation	Confidential	36.6474	-121.78473	2.5
	366485N1218123W001	MW-BW-22-180	Voluntary	Observation	Confidential	36.6485	-121.8123	0.0
	366521N1218236W001 CDM MW-1 Beach 366521N1218236W002 Sentinel MW #1		CASGEM	Observation	140	36.652094	-121.823618	6.5
			Voluntary	Observation	Confidential	36.6521	-121.8236	0.0
	366363N1218018W002	MPWMD #FO-08-Deep	CASGEM	Observation	950	36.636285	-121.801804	6.5
	366474N1217847W002	FO-11-Shallow	Voluntary	Observation	Confidential	36.64741	-121.784731	2.5

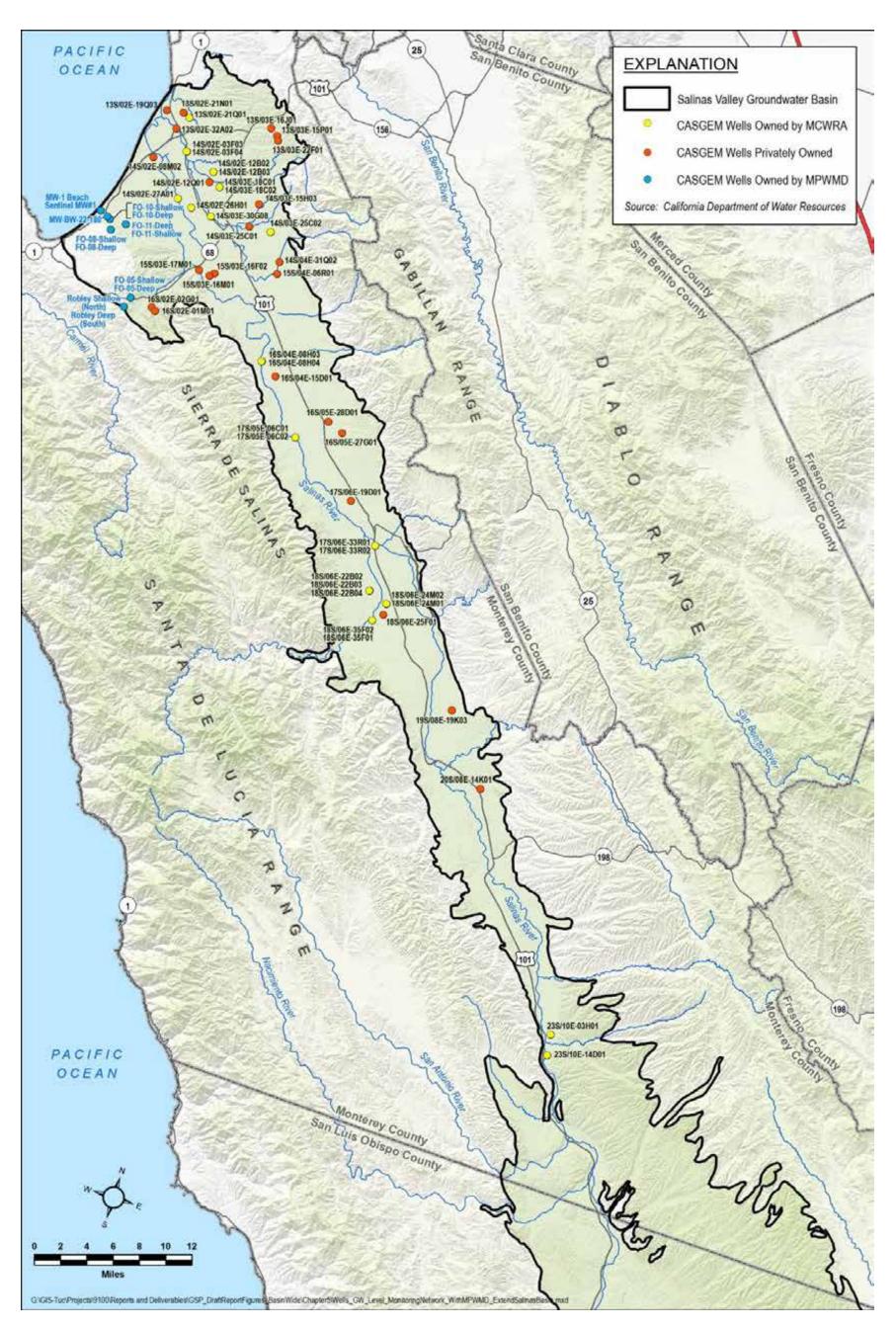


Figure 7-1. Existing CASGEM Groundwater Level Monitoring Wells

7

7.2.3 Groundwater Level Monitoring Protocols

Chapter 4 of the MCWRA CASGEM plan includes a description of the monitoring procedures. The CASGEM groundwater level monitoring protocols established by MCWRA are adopted by this ISP for manual groundwater level monitoring. The monitoring protocols are included in Appendix 7-A. Groundwater elevation data are currently collected both by hand and using automated pressure transducers. The monitoring protocols established by MCWRA cover multiple monitoring methods for collection of data by hand and by automated pressure transducers.

7.2.4 Groundwater Level Monitoring Network Data Gaps

Based on the SGMA regulations, visual analysis of the existing monitoring network, and the BMPs published by DWR on monitoring networks (DWR, 2016a), professional judgment was used to evaluate whether there are data gaps in the current water level monitoring network.

While there is no definitive requirement on monitoring well density, the BMP cites several studies (Heath, 1976; Sophocleous, 1983; Hopkins, 1984) that recommend 0.2 to 10 wells per 100 square miles. The BMP notes that professional judgement should be used to design the monitoring network to account for high-pumping areas, proposed projects, and other basin-specific factors.

The Salinas Valley ISP area encompasses 824 square miles. Following the guidance in the BMP, the groundwater monitoring well network should consist of 2 to 82 monitoring wells. However, the groundwater monitoring well network must be adequate for each individual subbasin, not simply in the entire basin. Therefore, a simple numerical assessment of the number of monitoring wells in the entire valley is ineffective for assessing data gaps. Visual inspection of the geographic distribution of the well network clearly indicates that certain subbasins need additional wells to adequately characterize the groundwater conditions. A higher density of monitoring wells may also be recommended in areas of subsidence, groundwater withdrawal, and seawater intrusion.

The BMPs state that groundwater level data should be collected from each principal aquifer in the basin. As described in Chapter 4, there is only a single principal aquifer in most the Salinas Valley basin. The aquifers are sub-divided into productive depth intervals only in the 180/400-Foot Aquifer Subbasin, where there is a laterally-extensive aquitard. Well construction records available from MCWRA identify the aquifer in which each well is completed. If this information is not available, wells in the proposed monitoring network are assigned an aquifer based on their depth.

Figure 7-2 shows proposed locations for additions to the existing CASGEM groundwater level monitoring network. This figure shows the locations of existing groundwater elevation monitoring wells and the generalized locations of new proposed monitoring wells. The generalized locations for new wells were based on addressing the criteria listed in the monitoring BMP including:

- Monitoring every principal aquifer
- Providing adequate data to produce seasonal potentiometric maps
- Provide adequate data to map groundwater depressions and recharge areas
- Provide adequate data to estimate change in groundwater storage
- Demonstrate conditions at Subbasin boundaries

The data gap areas shown on Figure 7-2 will be refined in each subbasin's GSP. Each GSP will include a plan to address these data gaps in the future by either identifying an existing well in each area that meets the criteria for a valid monitoring well, or drilling a new well in each area.

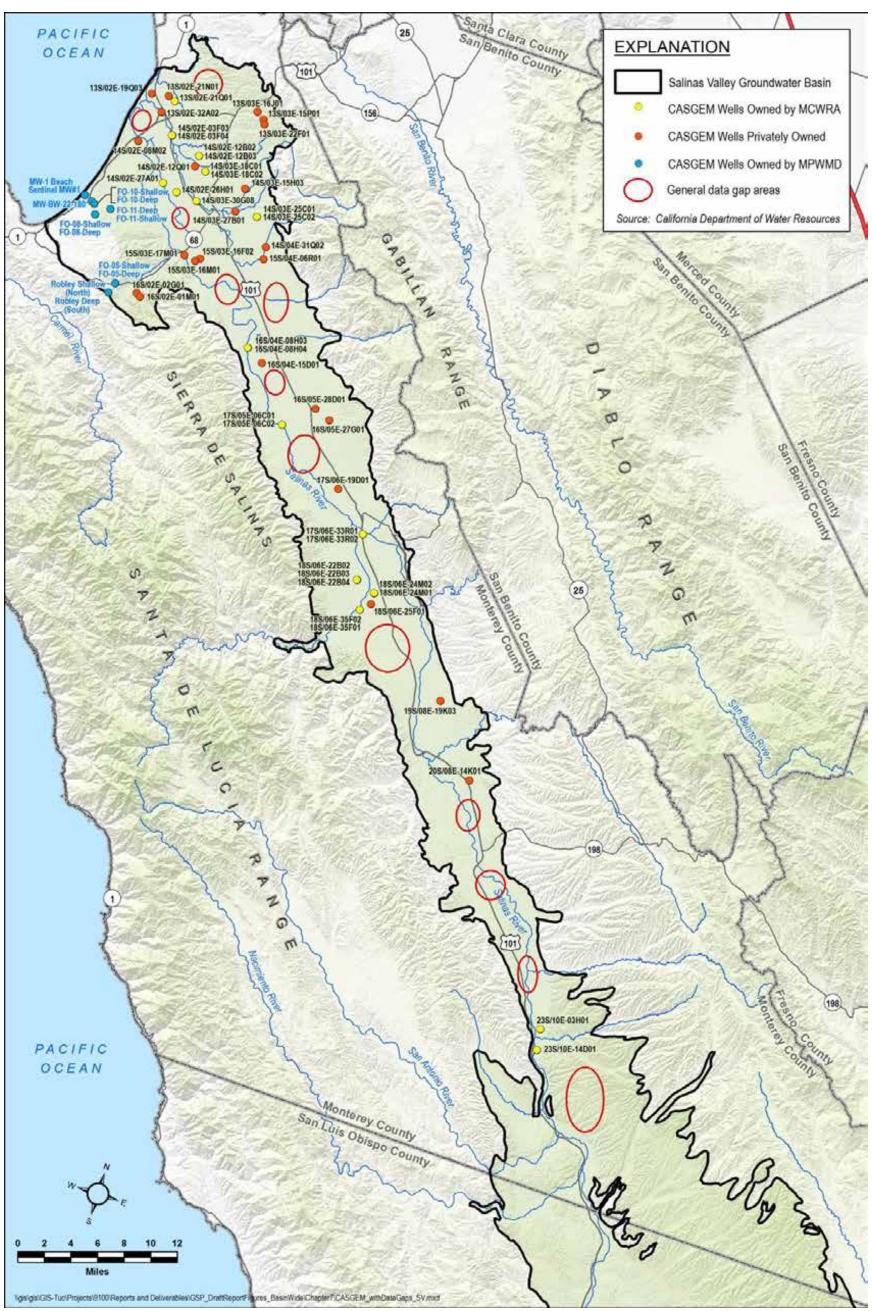


Figure 7-2. Proposed Locations for Additional Groundwater Level Monitoring Wells

7.3 Groundwater Storage Monitoring Network

In accordance with the change in groundwater storage minimum thresholds, the sustainability indicator for Reduction of Groundwater in Storage is an amount of annual groundwater pumping. The total amount of groundwater withdrawn from the basin will be measured in a number of ways:

- Municipal groundwater users and small water systems, defined as systems with at least 15 connections or serving at least 25 people, are required to measure their groundwater usage and report it to the State of California. These data are available on the State's Drinking Water Information Clearinghouse website. These data will be used to quantify municipal and small system pumping.
- Agricultural pumping will be collected in one of two ways:
 - Most agricultural pumpers comply with the existing Monterey County Ordinance 3717 that requires groundwater users to report total pumping rates annually to the MCWRA. Groundwater pumping wells with a discharge pipe less than 3 inches in diameter are exempt from this requirement. These lower production wells will be accounted for separately. SVBGSA will work with MCWRA to obtain these data through a coordinated reporting program such that wells owners can provide a single annual reporting to fulfill the requirements of the GSP and the existing County ordinance 3717.
 - For agricultural users that do not report their pumping annually, pumping will be estimated using Monterey County crop data and crop duty estimates, times a multiplier. The crop duty and multipliers are a data gap as described in Section 7.1.1.
- Domestic pumping, including pumping by small water systems that are not required to report their pumping data to the State, will be estimated by multiplying the estimated number of domestic users by a water use factor. The initial water use factor will be 0.75 AFY/dwelling unit. The 0.75 AFY/ dwelling unit is consistent with the value used in the SVIHM model. This factor may be revised in the future if SVBGSA obtains information to justify a change.

7.1.1 Groundwater Storage Monitoring Data Gaps

Accurate assessment of the amount of pumping requires an accurate count of the number of municipal, agricultural, and domestic wells in the ISP area. During implementation of each GSP, the SVBGSA will finalize a database of existing and active groundwater production wells in each GSP subbasin. This database will draw from the existing MCWRA database, DWR's OWSCR database, and the Monterey County Health Department database of small water

systems. As part of the assessment, the SVBGSA will verify well completion information and location, and whether the well is active, abandoned, or destroyed.

A potential data gap is the accuracy and reliability of reported pumping rates. SVBGSA will work with MCWRA to evaluate methods currently in place to assure data reliability. Based on the results of that evaluation, the protocols for monitoring may be revised and a protocol for well meter calibration will be developed. In addition, crop data and crop duty multipliers for estimating unreported pumping must be developed in areas where agricultural groundwater pumping is not reported. These crop duty multipliers will be used to estimate groundwater pumping, based on crop type and acreage.

7.1.2 Groundwater Storage Monitoring Protocols

Groundwater storage monitoring will be accomplished through use of existing monitoring programs performed by other agencies. For municipal groundwater users and small water systems, SVBGSA will download data directly from the State's Drinking Water Information Clearinghouse website. For agricultural groundwater users, SVBGSA will work with MCWRA to develop a protocol for sharing data that is currently reported under County Ordinance 3717. SVBGSA will consider the value of developing protocols for flowmeter calibration.

7.2 Seawater Intrusion Monitoring Network

The sustainability indicator for Seawater Intrusion is evaluated using the location of a chloride isocontour, based on chloride concentration measured at a network of monitoring wells. MCWRA currently develops biennial maps of the 500 mg/L chloride isocontour. Maps of this chloride isocontour for the 180-foot aquifer and the 400-foot aquifer in 2017 are presented in Figures 5-7a and 5-7b, respectively. These maps are based in part on confidential information obtained from private wells. The seawater intrusion monitoring network will include only wells where the data can be made publicly available. Figure 7-3 shows the location of monitoring wells that have been recently used by MCWRA to monitor chloride concentrations on the coastal areas of the Salinas Valley Groundwater Basin. Data from these wells will be reviewed concurrently with the chloride isocontour maps to monitor seawater intrusion. More detail is provided in the GSPs for the 180/400 Foot Aquifer and Monterey subbasins.

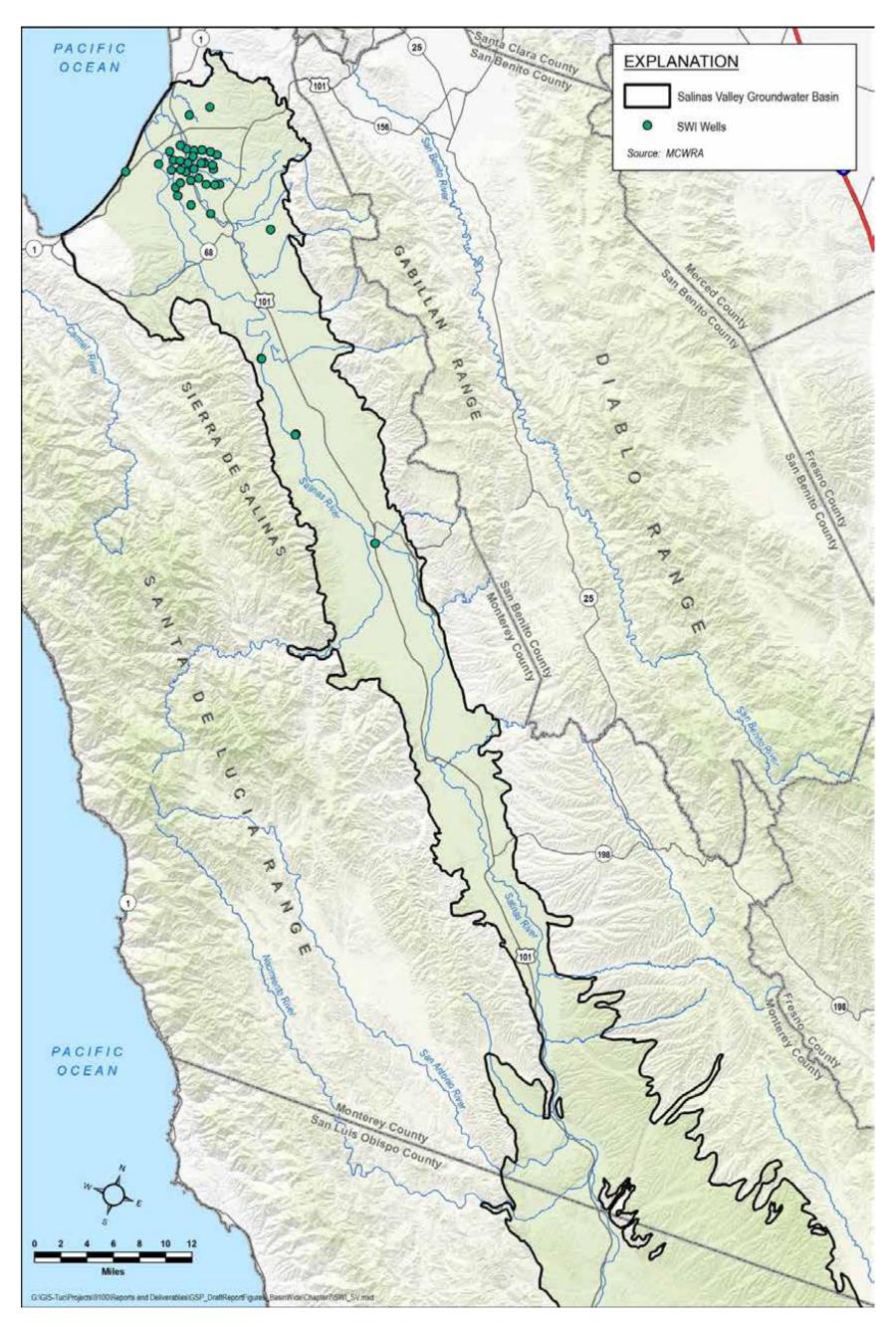


Figure 7-3. Seawater Intrusion Monitoring Wells

7.3.1 Seawater Intrusion Monitoring Protocols

Monitoring of seawater intrusion has been on-going since the MCWRA formed in 1947, and currently includes a network of 96 agricultural wells and 25 dedicated monitoring wells that are sampled twice annually: in June and August. The water samples are analyzed for general minerals; and the analytical results are used by MCWRA to analyze and report the following:

- Maps and graphs of historical chloride and specific conductivity trends
- Stiff diagrams and Piper diagrams
- Plots of chloride concentration vs. Na/Cl molar ratio trends

The protocols established by MCWRA for collecting groundwater quality data from monitoring wells and analyzing those data for seawater intrusion are adopted by this ISP. The groundwater quality data monitoring protocols are available in the Monterey County Quality Assurance Project Plan (QAPP) and included in Appendix 7-B. MCWRA also established chloride data contouring protocols to establish the isocontour map, provided in Appendix 7-C.

7.3.2 Seawater Intrusion Monitoring Data Gaps

Although the existing seawater intrusion monitoring system has successfully tracked the 500 mg/L isocontour for the 180-Foot and the 400-Foot aquifers, the chloride isocontour maps do not provide monitoring data for the Deep aquifer. Therefore, developing a monitoring network for seawater intrusion in the Deep aquifer is considered a data gap. The proposed groundwater level monitoring wells in the 180/400-Foot Aquifer Subbasin and the Monterey Subbasins, shown on Figure 7-2, will be incorporated into the seawater intrusion monitoring plan.

7.4 Water Quality Monitoring Network

The sustainability indicator for Degraded Water Quality is evaluated by monitoring groundwater quality at a network of existing supply wells. The regulations require sufficient spatial and temporal data from each applicable principal aquifer to determine groundwater quality trends for water quality indicators to address known water quality issues.

There are no known significant contaminant plumes in the ISP area, therefore the monitoring network is monitoring non-point source pollution and naturally occurring water quality impacts.

Existing groundwater quality monitoring programs in the ISP area are described in Chapters 3 and groundwater quality distribution and trends are described in Chapter 5. Constituents of concern were identified in Chapter 5 based on comparison to drinking water standards.

As described in Chapter 8, separate minimum thresholds are set for agricultural constituents of concern and public supply well constituents of concern. Therefore, although there is a single groundwater quality monitoring network, different wells in the network will be reviewed for different constituents. Constituents of concern for drinking water will be assessed at public water supply wells. Constituents of concern for crop health will be assessed at agricultural supply wells.

The public water supply wells included in the monitoring network were identified by reviewing data from the State Water Resources Control Board (SWRCB) Division of Drinking Water. Wells were selected that had at least one of the constituents of concern reported from 2015 or more recently, and totaled 269 wells (GAMA, 2015). These wells are listed in Appendix 7-D and shown in Figure 7-4. In addition, water supply wells for small public water systems, as monitoring by Monterey County, as used to supplement the water quality monitoring network for public drinking water beneficial use.

Small public water systems wells, regulated by Monterey County Department of Public Health, are also included in the water quality monitoring network. A total of 550 wells are currently in this network. The limitation of this dataset is that the well location coordinates and construction information are currently missing; this is a data gap.

The agricultural supply wells included in the monitoring network are currently those that have been sampled through the Irrigated Lands Regulatory Program (ILRP), by the Central Coast Groundwater Coalition (CCGC). The CCGC has been conducting groundwater monitoring under the ILRP since 2013, sampling more than 1,200 domestic and irrigation supply wells on Coalition member ranches within the agricultural region (CCGC 2017). In 2017, Ag Order 3.0 was issued and provides a "temporary three-year order, in anticipation of a comprehensive order anticipated for adoption in 2020". Under the new 2020 Order 4.0, a long-term groundwater quality monitoring program will be put in place. The SVBGSA will use the data developed under this monitoring program to determine if domestic supply wells have constituents of concern above drinking water limits. In addition, the data will be reviewed to assess if agricultural supply wells are impacted by constituents that are detrimental to crops and could impair the agricultural beneficial use. The SVBGSA will identify a select number of ILRP wells as representative sites after Ag Order 4.0 is issued; not all wells sampled under Ag Oder 4.0 will be included in the SGMA agricultural water quality monitoring network. The constituents of concern for crops are listed in Table 3-2 of the Water Quality Control Plan for the Central Coastal Basin (SWRCB 2017). Figure 7-5 shows the locations of all wells in the current ILRP groundwater quality monitoring network that were sampled under the temporary orders.

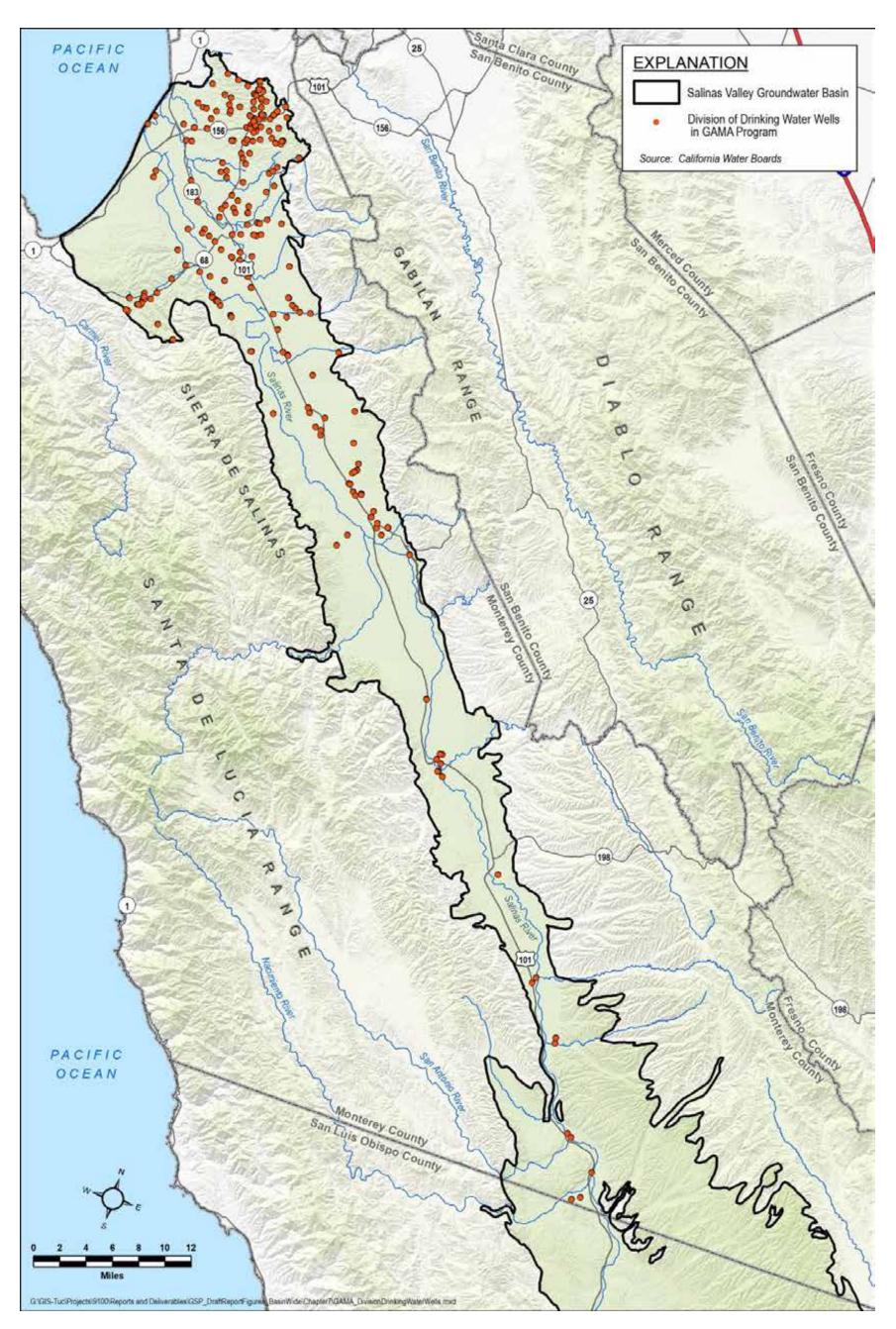


Figure 7-4. Locations of Wells in the Groundwater Quality Monitoring Network for Public Water Supply Wells

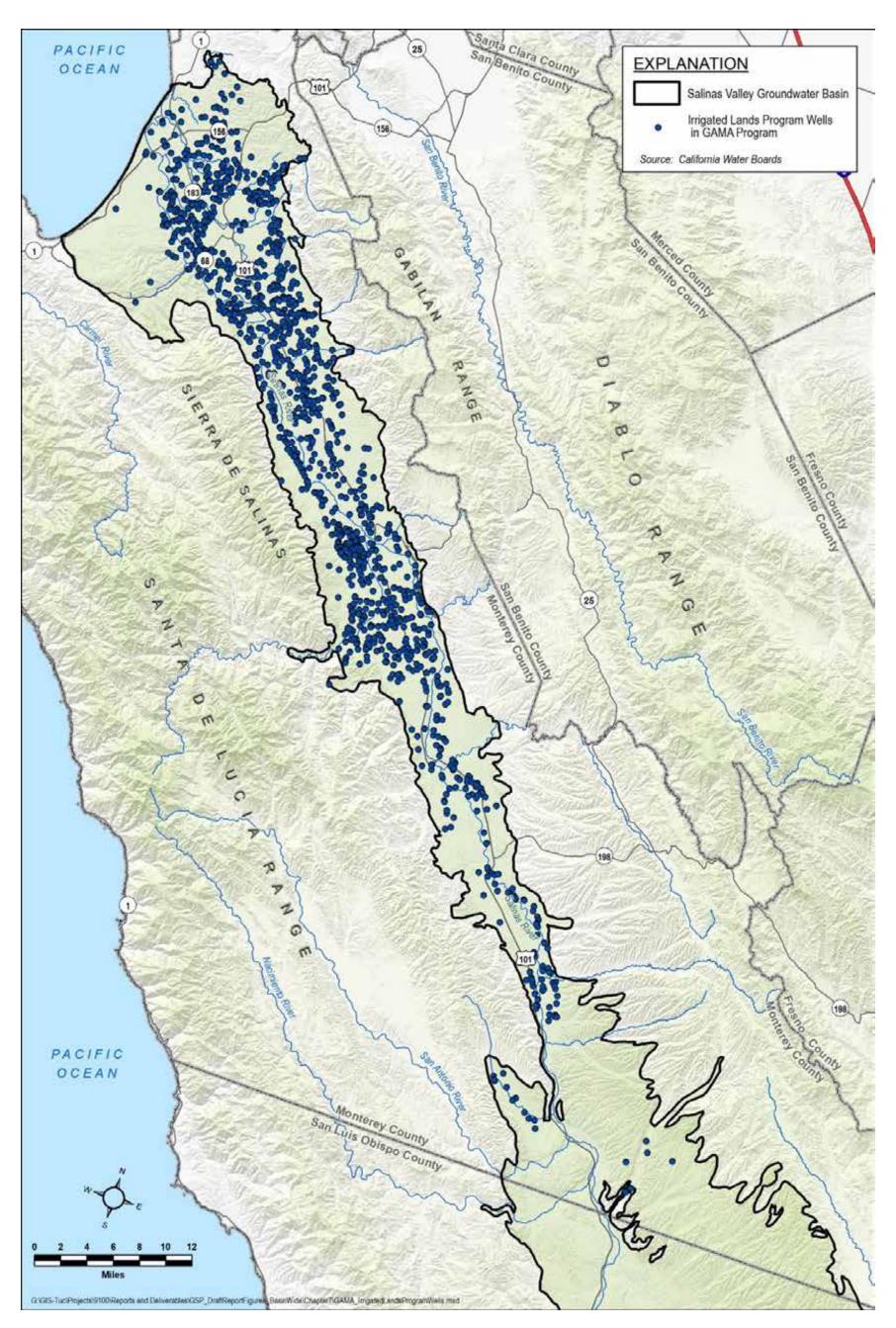


Figure 7-5 Locations of Wells in the Groundwater Quality Monitoring Network for ILRP Wells

7.4.1 Groundwater Quality Monitoring Data Gaps

There is adequate spatial coverage to assess impacts to beneficial uses and users. The primary data gap is that well construction information for many wells in the monitoring network is not known. This is part of plan implementation phase, as described in Chapter 10.

7.4.2 Groundwater Quality Monitoring Protocols

Water quality samples are currently being collected according to SWRCB and ILRP requirements. Drinking water supply well water quality data from public systems are collected, analyzed, and reported in accordance with protocols that are reviewed and approved by the California State Water Board, Division of Drinking Water, in accordance with the state and federal Safe Drinking Water Acts. Monitoring protocols may vary by agency.

ILRP data are currently collected under Central Coast RWQCB Ag Order 3.0. ILRP samples are collected under the Tier 1, Tier 2, or Tier 3 monitoring and reporting programs. Copies of these monitoring and reporting programs are included in Appendix 7-E, and incorporated herein as monitoring protocols. These protocols will continue to be followed during ISP and GSPs implementation for the groundwater quality monitoring.

7.5 Land Subsidence Monitoring Network

The risk of land subsidence results from lowered groundwater levels, specifically when groundwater levels decrease to levels below the lowest historical water levels. When water levels fluctuate only within the range of historical conditions, the alluvial layers are not subject to effective stress greater than historical conditions and therefore are not at risk of subsidence.

Given that land subsidence is directly related to water levels, the ISP monitoring network for land subsidence will be the same monitoring network as that for chronic lowering of water levels as described in Section 7.2. The SMCs for land subsidence are described in Section 8.6. As described therein, the land subsidence SMCs may be based on a subset of the wells in the network.

7.6 Interconnected Surface Water Monitoring Network

As described in Section 5.5, surface water is interconnected with the groundwater basin in the southern portions of the basin within the Upper Valley and Forebay subbasins. Based on the description in Section 5.5, the ISP monitoring network for interconnected surface water will be established in the portions of the subbasins where the Salinas River is interconnected with groundwater.

The rate of depletion of interconnected surface waters is estimated using the SVIHM. However, accurate assessment of stream depletion relies on accurate assessment of shallow groundwater levels adjacent to interconnected surface water bodies. Shallow monitoring well data will be collected and compared to simulated estimates of surface water depletion to characterize the spatial and temporal exchanges between surface water and groundwater.

Sufficient shallow wells must be available adjacent to surface water bodies to verify groundwater model estimates of stream depletion. There are currently no adequate shallow wells adjacent to interconnected surface water bodies for verifying SVIHM results. This is further addressed in the data gap section, below.

Furthermore, SVIHM estimates of surface water depletion will be verified using differential stream gauging. The verification network will consist of the following gauging stations, locations shown on Figure 7-6.

- Four permanent USGS gauging stations, including three locations on the Salinas River and one on the Arroyo Seco, where river flow rates are recorded daily. These data are publicly available through the USGS website. These data often cover many decades, including data from the late 1940s for some Salinas River gauges.
- Five temporary gauging locations that can be measured periodically to provide supplementary gauging data from locations between the permanent gauging stations.

Stream depletion rates (cubic feet per second per mile) will be calculated for each segment between gages by dividing the difference in measured flow at the gages (ΔQ) by the river mileage between the gages.

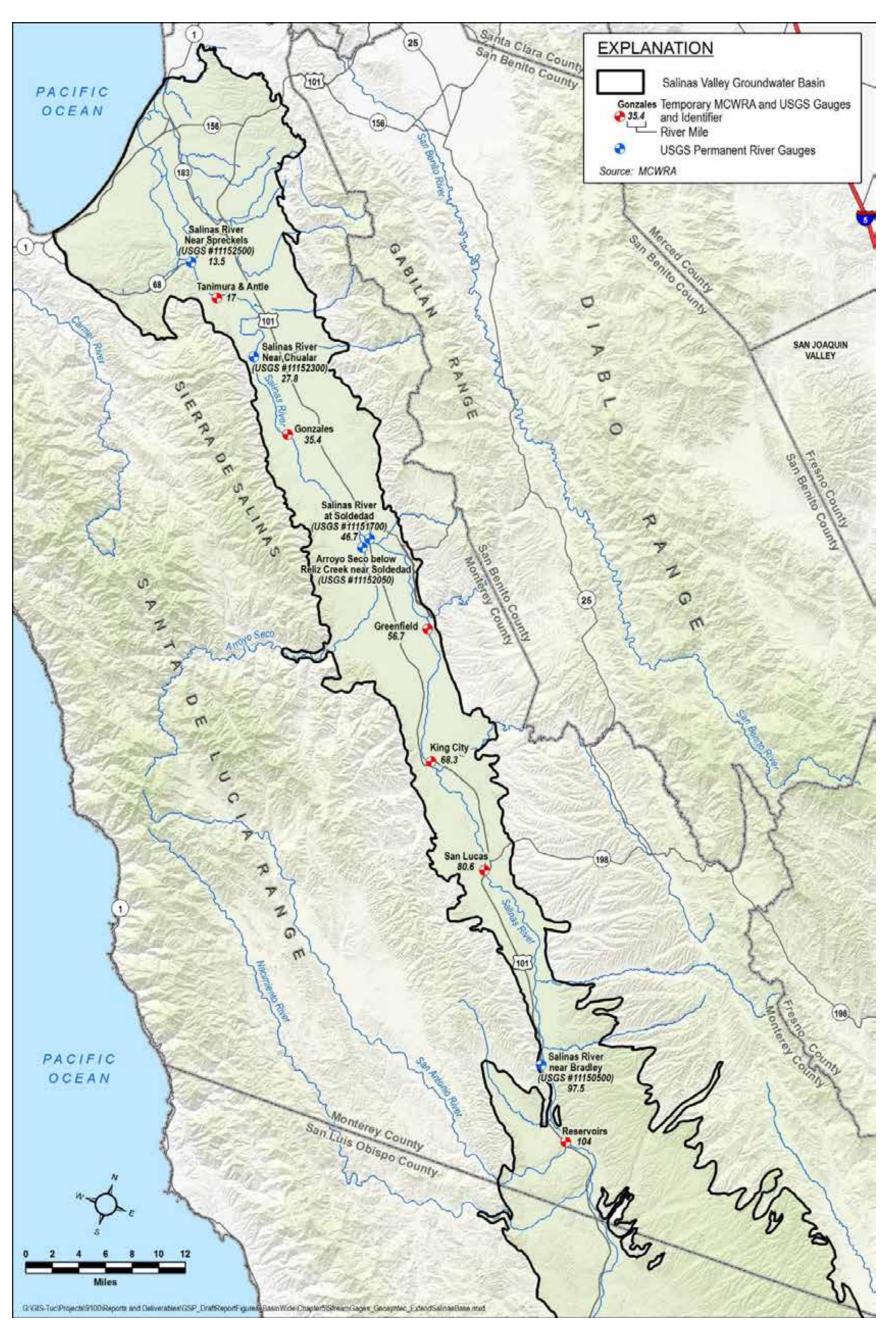


Figure 7-6. Stream Gaging Stations

7.6.1 Interconnected Surface Water Monitoring Data Gaps

Data gaps have been identified based on the regulations and BMPs published by DWR on monitoring networks (DWR, 2016a).

The regulations require that the monitoring network characterize the following:

- Flow conditions including surface water discharge, surface water head, and baseflow contribution.
- The approximate date and location where ephemeral or intermittent flowing streams and rivers cease to flow, if applicable.
- Temporal change in conditions due to variations in stream discharge and regional groundwater extraction.

Shallow groundwater elevation data adjacent to the streams are needed to improve estimates of the location and extent of interconnected surface waters and the depletion due to groundwater pumping. In addition, it will be necessary to refine our understanding of the timing and position along stream where ephemeral or intermittent streams cease to flow. Figure 7-7 shows the locations of proposed shallow groundwater monitoring wells to address these data gaps.

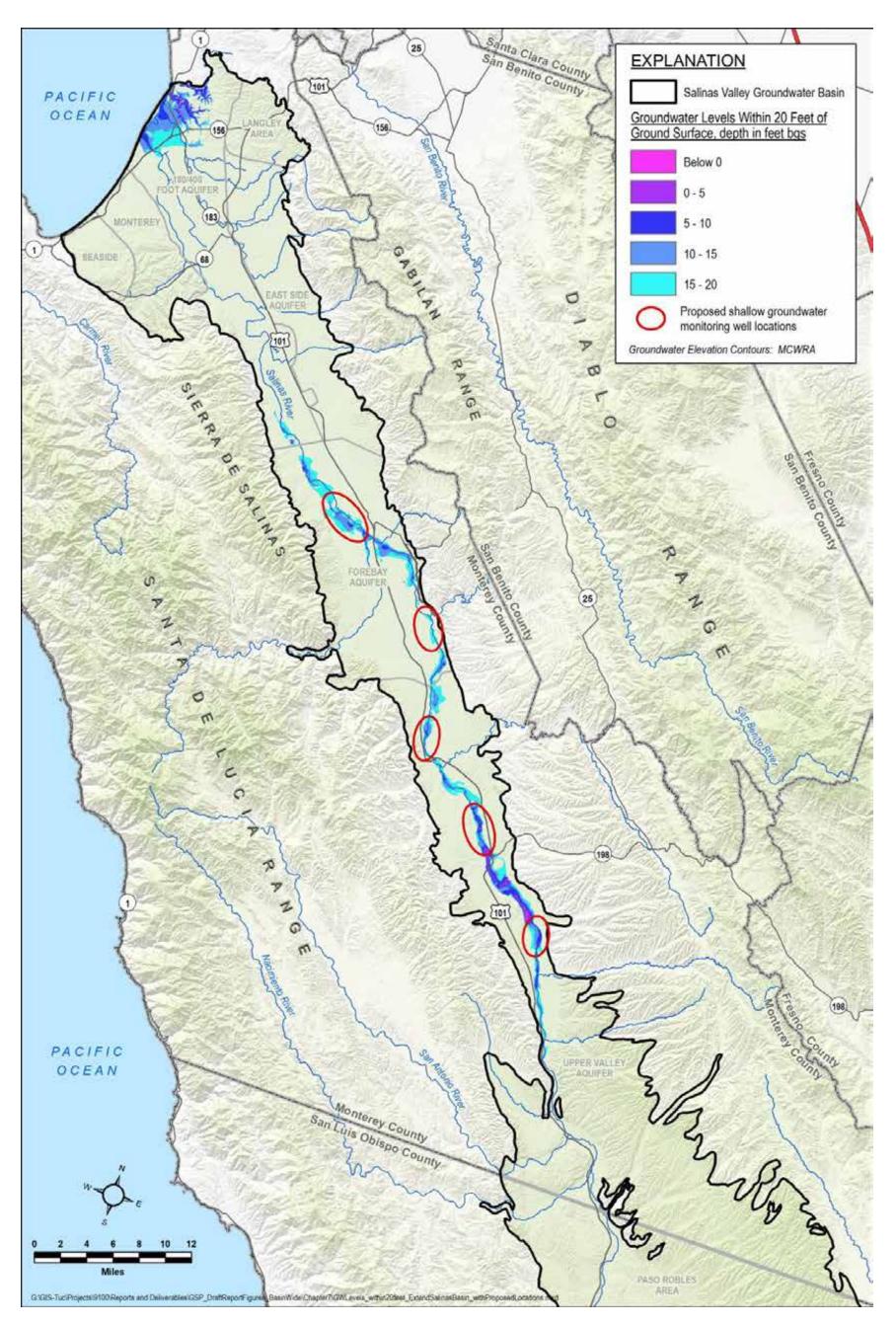


Figure 7-7. Locations of Proposed Shallow Groundwater Monitoring Wells

7.6.2 Interconnected Surface Water Monitoring Protocols

The USGS gages are recorded daily and are publicly available, so there is no protocol needed for collection of these data. The temporary gauging stations will need to be monitored by SVBGSA and protocols will need to be developed for monitoring these temporary stations. Water level monitoring will be conducted in accordance to the protocols described in the water level monitoring network section of this chapter.

7.7 Representative Monitoring Sites

Representative monitoring sites (RMS) are defined in the regulations as a subset of monitoring sites that are representative of conditions in the basin. All of the monitoring sites shown in figures and tables are considered RMS.

7.8 Data Management System and Data Reporting

The SVBGSA has developed a Data Management System (DMS) that is used to store, review, and upload data collected as part of the ISP development and implementation. The DMS adheres to the following SGMA regulations:

- Article 3, Section 352.6: Each Agency shall develop and maintain a data management system that is capable of storing and reporting information relevant to the development or implementation of the Plan and monitoring of the basin.
- Article 5, Section 354.40: Monitoring data shall be stored in the data management system developed pursuant to Section 352.6. A copy of the monitoring data shall be included in the Annual Report and submitted electronically on forms provided by the Department.

The SVBGSA DMS consists of two SQL databases. The HydroSQL database stores information about each well and water level and extraction time-series data. Fields in the HydroSQL database include:

- Subbasin
- Cadastral coordinates
- Planar coordinates
- Well owner
- Well name
- Well status
- Well depth

- Screened interval top and bottom
- Well type
- Water level elevation
- Annual pumping volume

Streamflow gauge data from the USGS will be stored in the HydroSQL similarly to the well water level information.

Water quality data are stored in the EnviroData SQL database, which is linked to the HydroSQL for data management purposes. EnviroData SQL contains fields such as:

- Station
- Parameter
- Sample Date
- Detection (detect or non-detect)
- Value
- Unit

The data used to populate the SVBGSA DMS are listed on Table 7-3. Categories marked with an X indicate datasets that are publicly accessible or available from MCWRA and other sources that were used in populating the DMS.

	Data Category										
Data Sets	Well and site info	Well construction	Aquifer properties and lithology (data to be added)	Water level	Pumping (data to be added)	Recharge (data to be added)	Streamflow (data to be added)	Diversion (data to be added)	Water quality		
DWR (CASGEM)	Х	Х		Х							
MCWRA	Х	Х		Х	Х				Х		
GeoTracker GAMA	Х								Х		
USGS Gage Stations							Х				

Table 7-3. Datasets Available for Use in Populating the $\ensuremath{\mathsf{DMS}}$

Data were compiled and reviewed to comply with quality objectives. The review included the following checks:

- Identifying outliers that may have been introduced during the original data entry process by others.
- Removing or flagging questionable data being uploaded in the DMS. This applies to historic water level data, water quality data, and water level over time.

The data were loaded into the database and checked for errors and missing data. The error tables identify water level and/ or well construction data as missing. Another quality check was completed with the water level data by plotting each well hydrograph to identify and remove anomalous data points.

In the future, well log information will be entered for selected wells and other information will be added as needed to satisfy the requirements of the SGMA regulations. The DMS will be migrated to a web-based DMS managed by the SVBGSA that is currently being planned and developed.

7.9 References

- California Department of Water Resources (DWR), 2016. Monitoring Networks and Identification of Data Gaps Best Management Practice
- Central Coast Groundwater Coalition. 2017. CCGC Workplan Ag Order 3.0 <u>http://www.centralcoastgc.org/wp-content/uploads/2016/04/2017-CCGC-Cooperative-Monitoring-Plan.pdf</u>
- Heath, R. C., 1976. Design of ground-water level observation-well programs: Ground Water, V. 14, no. 2, p. 71-77.
- Hopkins, J., 1994. Explanation of the Texas Water Development Board groundwater level monitoring program and water-level measuring manual: UM-52, 53 p.

http://www.twdb.texas.gov/groundwater/docs/UMs/UM-52.pdf

- MCWRA, 2015. CASGEM Monitoring Plan for High and Medium Priority Basins in the Salinas Valley Groundwater Basin.
- Sophocleous, M., 1983. Groundwater observation network design for the Kansas groundwater management districts, USA: Journal of Hydrology, vol.61, pp 371-389.

State Water Resources Control Board, 2017. Water Quality Control Plan for the Central Coastal Basin. <u>https://www.waterboards.ca.gov/centralcoast/publications_forms/publications/basin_plan/docs2017/2017_basin_plan_r3_complete.pdf</u>

Appendix 7-A

Monitoring Procedures from MCWRA CASGEM Monitoring Plan

4.0 Monitoring Procedures

This section addresses the various procedures and protocols involved in collecting, processing, and reporting data from wells in the CASGEM network.

4.1 Monitoring Frequency and Timing

Nineteen (19) of the CASGEM wells are currently, and will continue to be, measured on a monthly basis. The three (3) voluntary wells are also measured monthly. MCWRA will use the monthly measurements from August and either January, February, or March to satisfy the biannual CASGEM reporting criteria.

To determine the monthly distribution of seasonal high and low groundwater elevations, MCWRA analyzed measurements from approximately 50 wells throughout the Salinas Valley Groundwater Basin. This included wells in the 180/400 Foot Aquifer, East Side Aquifer, Forebay Aquifer, and Upper Valley Aquifer. The measurements were collected during eight (8) different Water Years (WY): WY 1985, representative of near normal conditions; WY 1991, representative of dry conditions; and the six most recent Water Years, WY 2009 through WY 2014. MCWRA reports this data on a quarterly basis; a sample report is included in Appendix B.

Based on this analysis of historical data, August is typically representative of seasonal low conditions (Figure 10). A relaxation of groundwater levels, or seasonal high conditions, is evident during the period from January to March (Figure 11). Data from these three months will be evaluated and the highest groundwater elevation from that series will be submitted to the CASGEM online submittal system. The month chosen to be representative of the seasonal high groundwater conditions will be consistent across all data groups.

Nineteen (19) of the CASGEM wells are equipped with pressure transducers which collect depth to water data on an hourly basis. This data will be synthesized so that biannual measurements representing seasonal high and low conditions are available for CASGEM reporting. The groundwater level measurement collected at noon on the fifteenth day of the month will be selected and compared to other monthly data to ensure that it is a representative value. Data from the month of August will be used to represent the seasonal low and a fall/winter measurement from either January, February, or March will be used to represent the seasonal high; the same month will be used as was selected based on monthly well measurements, as discussed above.

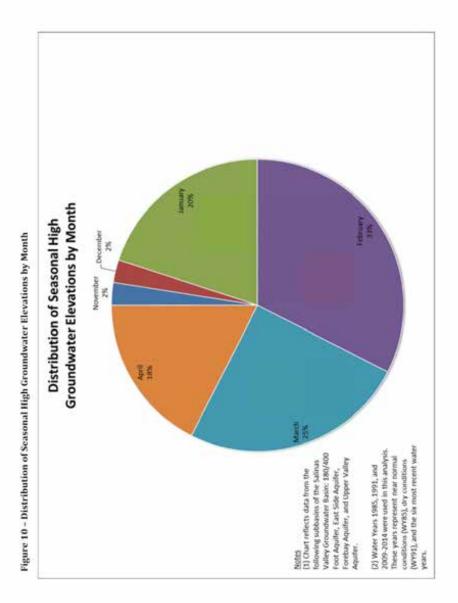
Four (4) of the wells in the CASGEM network are currently measured once per year, during the period from November to January. Based on the recent analysis of seasonal groundwater highs, this period will be shifted to cover the months from January through March. An additional measurement event will be added during the month of August for these wells in order to also capture the seasonal groundwater low.

Appendix C contains a summary of the frequency and timing of measurement of wells in the CASGEM network. Any new wells that are brought into the CASGEM program will be monitored on a

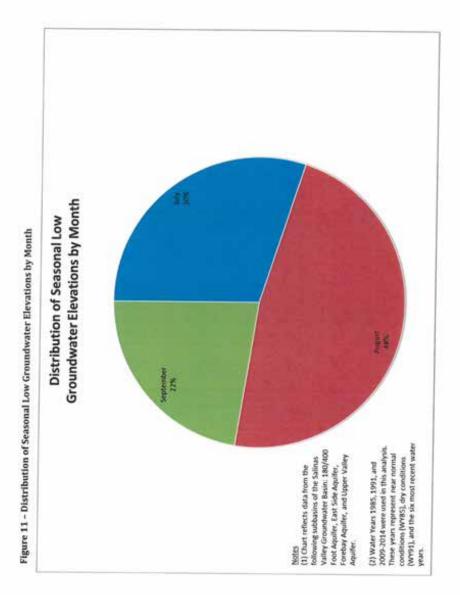
CASGEM Monitoring Plan High and Medium Priority Basins in the Salinas Valley Groundwater Basin

biannual basis, with data collection occurring on the same schedule as the other wells that are measured twice a year.

4.2 Well Locations


The latitude and longitude of each well was collected using a handheld GPS unit, which has accuracy to within one (1) meter. Coordinates for wells in the CASGEM network are shown in Appendix A. Any wells incorporated into the CASGEM network in the future will be geographically located using a similar method.

4.3 Reference Points


All of the wells that comprise the CASGEM network described herein are currently part of a groundwater level monitoring program conducted by MCWRA. As part of the existing monitoring programs, reference points (RP) have been established for all of the wells. To ensure consistency in measuring depth to water, a description of each well's RP is recorded in a field data collection notebook. In many cases, photographs have also been taken of the RP. Reference point elevations have been determined for all wells that are currently in a monitoring program; this data is listed in Appendix A.

A reference point will be determined for any new wells that are brought into the CASGEM network. Reference point elevations are determined using a digital elevation model from the United States. Geological Survey (USGS) with a cell size of 32 feet by 32 feet.

CASGEM Monitoring Plan High and Medium Priority Basins in the Salinas Valley Groundwater Basin

CASGEM Monitoring Plan High and Medium Priority Basins in the Salinas Valley Groundwater Basin

CASGEM Monitoring Plan High and Medium Priority Basins in the Salinas Valley Groundwater Basin

4.4 Field Methods

Groundwater elevation data collected from wells in the CASGEM network is intended to reflect static conditions. Best efforts will be made to ensure that wells have not recently been pumped prior to collecting a data point. Depth to water measurements will be made using one or more of the methods discussed in the following sections. Measurement methods described in the following sections are based on the Department of Water Resources document *Groundwater Elevation Monitoring Guidelines* (December 2010) with some alterations specific to wells in the monitored basins/subbasins described in this Monitoring Plan.

4.4.1 Graduated steel tape

Prior to measurement:

- Ensure that the reference point on the well can be clearly determined. Check notes in the field data collection notebook.
- Review the notes and comments for previous measurements in the field data collection notebook to determine if there are any unique circumstances at this well.
- Take note of whether oil has previously been present at this well; this will be
 recorded in the comments section of the data form.

Making a measurement:

- Use the previous depth to water measurement to estimate a length of tape that will be needed.
- Lower the tape into the well, feeling for a change in the weight of the tape, which
 typically indicates that either (a) the tape has reached the water surface or (b) the
 tape is sticking to the side of the well casing.
- Continue lowering the tape into the well until the next whole foot mark is at the reference point. This value on the tape should be recorded in the field data collection notebook.
- Bring the tape to the surface and record the number of the wetted interval to the nearest foot.
- If an oil layer is present, read the tape at the top of the oil mark to the nearest foot. Note in the comments section of the data form that oil was present.
- Repeat this procedure a second time and note any differences in measurement in the field data collection notebook.

4.4.2 Electric water level meter

This method of measurement employs a battery-powered water level meter and a small probe attached to a ruled length of cable. Depth to water measurements collected using this equipment are recorded to the nearest tenth of an inch. This instrument is sometimes referred to as a "sounder".

CASGEM Monitoring Plan High and Medium Priority Basins in the Salinas Valley Groundwater Basin

Prior to measurement:

- Review the field data sheet for the well and note whether oil has been present at this
 well in the past. The electric water level meter should not be used in wells where oil
 is present.
- Ensure that the reference point on the well can be clearly determined. Check notes in the field data collection notebook.
- Confirm that the water level meter is functioning and is turned on so that the beeping indicator will operate properly.

Making a measurement:

- Review previous depth to water measurements for the well to estimate the length of tape that will be needed.
- Lower the electrode into the well until the indicator sounds, showing the probe is in contact with the water surface.
- Place the tape against the reference point and read the depth to water to the nearest 0.1 foot. Record this value on the field data sheet.
- Make a second measurement and note any differences in measurement in the field data collection notebook.

4.4.3 Sonic water level meter

This meter uses sound waves to measure the depth to water in a well. The meter must be adjusted to the air temperature outside the well; there is a card with reference temperatures in the case with the sonic meter.

Making a measurement:

- Insert the meter probe into the access port and push the power-on switch. Record the depth from the readout.
- · Record the depth to water measurement in the field data collection notebook.

4.4.4 Pressure transducer

Automated water-level measurements are made with a pressure transducer attached to a data logger. Pressure transducers are lowered to a depth below the water level in the well and fastened to the well head at a reference point. Data points are logged on an hourly basis. MCWRA uses factory-calibrated, vented pressure transducers (Appendix D). MCWRA staff collects the pressure transducer data once per quarter. During the data collection process, data loggers are stopped, and the data is downloaded onto a laptop, and then the data logger is reactivated and scheduled to begin collecting data again on the next hour. Upon return from the field, data is processed and reviewed for errors.

CASGEM Monitoring Plan High and Medium Priority Basins in the Salinas Valley Groundwater Basin

30

4.5 Data Collection, Processing, and Reporting

Following completion of all fieldwork, data is transcribed from field data sheets and checked for errors before being loaded into MCWRA's Oracle platform database. All data will be stored in the MCWRA database before being uploaded to the CASGEM website. Submittal of data to the CASGEM website will occur at a minimum of twice per year, no later than January 1 and July 1, per DWR CASGEM program guidelines.

Bi-annual submittal of data to the CASGEM website will include the following for each well in the CASGEM network, as described in the DWR document CASGEM Procedures for Monitoring Entity Reporting:

- Well identification number
- Measurement date
- Reference point and land surface elevation, in feet, using NAVD88 vertical datum
- Depth to water, in feet
- Method of measuring water depth
- Measurement quality codes
- Measuring agency identification
- Comments about measurement, if applicable

The following information will also be submitted to the CASGEM online system, as it is required by DWR unless otherwise noted:

- Monitoring Entity name, address, telephone number, contact person name and email address, and any other relevant contact information
- · Groundwater basins being monitored (both entire and partial basins)
- State Well Identification number (recommended)
- Decimal latitude/longitude coordinates of well (NAD83)
- Groundwater basin or subbasin
- Reference point elevation of the well, in feet, using NAVD88 vertical datum
- Elevation of land surface datum at the well, in fee, using NAVD88 vertical datum
- Use of well
- Well completion type (e.g. single well, nested well, or multi-completion well)
- Depth of screened interval(s) and total depth of well, in feet, if available
- Well Completion Report number (DWR Form 188), if available

CASGEM Monitoring Plan High and Medium Priority Basins in the Salinas Valley Groundwater Basin

31

Appendix 7-B

Monterey County Quality Assurance Project Plan (QAPP)

Quality Assurance Project Plan (QAPP) For Water Quality Monitoring Associated with the Salinas Valley Integrated Water Management Plan (SVIWMP)

> EPA R9#03-238 X-97994701-0

Monterey County Water Resources Agency P.O. Box 930 Salinas, CA 93902 Telephone: (831) 755-4860 Fax: (831) 424-7935 Website: http://www.mcwra.co.monterey.ca.us

WATR 0584QV4 (COPY2)

Monterey County Water Resources Agency EPA R9#03-238 X-97994701-0 2 August, 2007

1.0 PROJECT MANAGEMENT

1.1 TITLE AND APPROVAL PAGE

Quality Assurance Project Plan For Water Quality Monitoring Associated with The Salinas Valley Integrated Water Management Plan (SVIWMP) EPA R9#03-238 X-97994701-0

Prepared by: Monterey County Water Resources Agency (MCWRA) P.O. Box 930 Salinas, CA 93902

> Prepared for: US EPA Region 9 75 Hawthorne Street San Francisco, CA 94105-3901

Approval Signatures

Elizabeth Krafft Agency Project Manager:

8/12/02 Date:

107

10/2.2/07

12/3/07

22005 2007

Date

Date

Date:

Date:

white n ¢

Kathleen Thomasberg Agency Project QA/Task Manager:

lexer ll

Eugenia McNaughton, Ph.D. USEPA Region 9 QA Program Manager:

Carolan 9 Ula Carolyn Yale

USEPA Region 9 Project Officer:

Mark Kutnink USEPA Region 9 Chemist:

- 2 -

1.2 TABLE OF CONTENTS

1.0	PROJECT MANAGEMENT	
1.1	Title and Approval Page	2
1.2	Table of Contents	į.
1.3	Distribution List	5
1.4	Project/Task Organization	į.
1.5	Problem Identification/Background	\$
	1.5.1 Background	1
	1.5.2 Program Objectives	
	1.5.3 Program Goals	<u> </u>
1.6	Project/Task Description	
1.0	1.6.1 Work Statement and Produced Products	
	1.0.1 Work Statement and Produced Products	
	1.6.2 Constituents to be monitored and measurement techniques	
	1.6.3 Project Schedule	
	1.6.4 Geographical Setting	
	1.6.5 Constraints	1
1.7	Data Quality Objectives for Measurement Data	1
	1.7.1 Objectives and Project Decisions	5
	1.7.2 Action Limits/Levels 14	1
	1.7.3 Measurement Performance Criteria	
1.8	Training Requirements/Certification	į
	1.8.1 Training of Field Personnel.	3
	1.8.2 Training of Laboratory Personnel 17	
	1.8.3 GPS Training Documentation	,
1.9	Documentation and Records	,
	1.9.1 QA Project Plan Distribution	,
	1.9.2 Field Documentation and Records	
	1.9.2.1 Field Sheets	,
	1.9.2.2 Chain of Custody (COC) Forms	
	1.0.2.2 Chain of Custody (COC) Forms	2
	1.9.2.3 Photographs	1
	1.9.2.4 Labels	
	1.9.2.5 Field Quality Control Sample Records	
	1.9.3 Laboratory Documentation and Reports)
	1.9.4 Technical Reviews and Evaluations	1
	1.9.4.1 Field Activities Review Checklist	1
	1.9.4.2 Laboratory Data Review Checklist	
	1.9.5 Technical Memorandum	
2.0	DATA GENERATION AND ACQUISITION	
2.1	Sampling Process Design	
	2.1.1 Salinas Valley Ground Water	
	2.1.2 Coastal Ground Water	,
2.2	Sampling Methods	i
2.3	Sample Handling and Custody	í.
2.0	2.3.1 Sample Containers and Preservatives	
	2.3.2 Sample Packaging and Transport	
	2.3.3 Sample Custody	
	2.3.4 Sample Custody	2
	2.0.4 Gample Dieposal	

- 3 -

	X	-979
		Augu
	Analytical Methods	
2.5	Quality Control	
	2.5.1 Field Sampling Quality Control	5
~ ~	2.5.2 Laboratory Analyses Quality Control	
2.6 2.7	Instrument/Equipment Testing, Inspection, and Maintenance	6
2.8		6
2.0	2.8.1 Initial Inspection of Supplies	
	2.8.2 Field Inspection of Supplies	
	2.8.3 Laboratory Inspection of Supplies	7
2.9		2
	Data Management	
	Cata management.	,
3.0	ASSESSMENT AND RESPONSE ACTIONS	7
3.1		
	3.1.1 Readiness Reviews	7
	3.1.2 Field Reviews	
	3.1.3 Post Sampling Reviews	
	3.1.4 Laboratory Data Reviews	
3.2	Reports	8
4.0		в
4.1		
	4.1.1 Field Data	
	4.1.2 Laboratory Data	8
4.2	Reconciliation with User Requirements	9
	DECEDENCES A	
5.0	REFERENCES	0
FIC	URES	
FIG	1 Monterey County, California	
	2 Salinas Valley Hydrologic Subareas	
	3 Salinas Valley Wells in the Pressure Subarea	
	4 Salinas Valley Wells in the East Side Subarea	
	5 Salinas Valley Wells in the Forebay Subarea	
	6 Salinas Valley Wells in the Upper Valley Subarea	
	7 Coastal Ground Water Monitoring Program Wells	
TAB	BLES	
	1 Complete Mineral Panel Analytes	
	2 Quality Control Requirements for Laboratory Analyses	

- vnalyses
- Quality Control Requirements for Laboratory
 Laboratory Data Quality Objectives (DQOs)
 Salinas Valley Wells and Locations
 Coastal Wells and Locations
 Requirements for Sample Collection

- APPENDICES A GPS Training Record B Field Documentation B-1 Example of Field Sheet B-2 Example of Chain of Custody Form (COC) B-3 Example of Photo-Log

- 4 -

- B-4 Example of Sample Labels
- C Review Checklists
- C Review Checklists C-1 Field Activities Review Checklist C-2 Laboratory Data Review Checklist D Monterey County Consolidated Chemistry Laboratory D-1 QA Manual D-2 Specific Conductance D-3 pH D-4 Total Alkalinity D-5 Metals D-6 Anions

- 5 -

1.3 DISTRIBUTION LIST

The following is a list of organizations and persons who will receive copies of the approved QA Project Plan and any subsequent revisions:

Monterey County Water Resources Agency (Agency) P.O. Box 930 Salinas, CA 93902

> Elizabeth Krafft Project Manager (831) 755-4860 krafftea@co.monterey.ca.us

Kathleen Thomasberg Project QA/Task Manager (831) 755-4860 thomasbergk@co.monterey.ca.us

Manuel Saavedra Hydrologist/ Team Lead (831) 755-4860 saavedram@co.monterey.ca.us

Carla James Water Resources Technician/ Field Sampler (831) 755-4860 JamesCR@co.monterey.ca.us

Tamara Voss Water Resources Technician/ Field Sampler (831) 755-4860 vosstl@co.monterey.ca.us

U.S. Environmental Protection Agency, Region 9 75 Hawthorne Street San Francisco, CA 94105-3901

> Eugenia McNaughton, Ph.D. QA Program Manager (415) 972-1111

Carolyn Yale Project Officer (415) 972-3482

Mark Kutnink Chemist (415) 972-3801

- 6 -

Monterey County Consolidated Chemistry Laboratory (CCL) 1270 Natividad Road, Room A15 Salinas, CA 93906

> Germain Guibert Laboratory Director (831) 755-4516

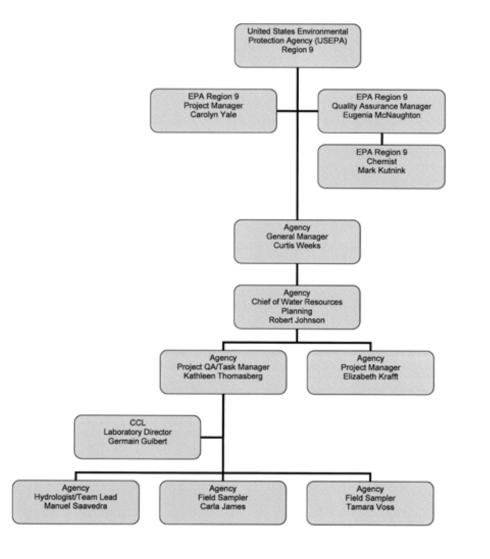
1.4 PROJECT/TASK ORGANIZATION

The organization responsible for overseeing this ground water monitoring program is the Monterey County Water Resources Agency (Agency). This project is funded through a grant from the Environmental Protection Agency (EPA), under the authority of Section §104 (b)(3) of the Clean Water Act. This project falls under the Monitoring and Assessment funding category. The Monterey County Health Department's Consolidated Chemistry Laboratory is a California state certified laboratory that will perform the chemical analyses for this ground water monitoring program. The laboratory will use standard analytical methods.

The roles and responsibilities of those involved in the implementation of the ground water monitoring program are described below. An organizational chart for the program is shown below.

Project Manager is the responsible official who will oversee the preparation of grants and the fiscal management of the project.

Project QA Manager is in charge of establishing the QA/QC protocols found in the QAPP as part of the sampling and analysis procedures. The QA Manager will also review and assess all analytical data from the contract laboratory and will be the liaison regarding data quality issues and concerns. She may stop all actions, including those conducted by the contract laboratory and will be responsible for ensuring that any amended versions of the QAPP are distributed to the organizations and individuals listed in Section 1.3.


Project Task Manager will oversee the ground water monitoring program. She will ensure that all QAPP protocols are followed and will oversee the writing and revisions of the QAPP. Since the Agency's Water Quality Department is not large, the Project Task Manager will function in the dual role of Task Manager and QA Manager.

<u>Hydrologist/Team Lead</u> will be responsible for coordinating with the Water Resources Technicians/ Field Samplers to review field and analytical requirements, documentation, and sampling schedules.

<u>Water Resources Technicians/Field Samplers</u> will be responsible for sample collection and communication with the contract laboratory regarding the sampling shipment schedule. They are also responsible for writing the QAPP.

- 7 -

ORGANIZATIONAL CHART

- 8 -

1.5 PROBLEM DEFINITION/BACKGROUND

1.5.1 Background

The Monterey County Water Resources Agency's (Agency) mission is to manage, protect, and enhance the quantity and quality of water for present and future generations of Monterey County (County). Monterey County, located along the California Central Coast, covers 3,322 square miles (8604 km²) and has a resident population of 424,842 (Fact Finder, 2007). The County supports a \$3.4 billion agricultural industry (Ag Commission, 2006) and a \$1.75 billion tourism industry (EPA Grant R9#03-238). The primary land use within the Salinas Valley is agricultural. Since the 1940's, irrigated acreage within the valley has increased substantially. Coastal regions of California are subject to rapid urbanization, and the milder coastal climate supports year-round intensive cultivation of many high-value crops (Hunt et al, 2003). As agricultural and urban areas have expanded, so have the water needs of the County (EPA Grant R9#03-238).

The Agency uses a network of wells to monitor ground water conditions in the Salinas Valley Ground Water Basin (Basin) (Geomatrix, 2001). The Basin is situated entirely within the County (EPA Grant R9#03-238). The Salinas Valley is surrounded by the Gabilan and Diablo Ranges on the east, by the Sierra de Salinas and Santa Lucia Range on the west, and is drained by the Salinas River, which empties into Monterey Bay in the north (DWR 1946a) (Fig 1). Four subareas based on differences in local hydrogeology and recharge have been identified (White Paper, 1995; DWR, 2003). These are known as the Pressure, East Side, Forebay, and Upper Valley subareas (Fig 2). These subareas are hydrologically and hydraulically connected (EPA Grant R9#03-238); all information collected to date indicates there are no barriers to the horizontal flow (of ground water) between these subareas (White Paper, 1995). The "boundaries" between these subareas have been identified as zones of transition between different depositional environments in past millennia (White Paper, 1995).

The primary surface water features overlying and influencing the Basin's hydrology are the Salinas River and its tributaries, the Nacimiento and San Antonio reservoirs, and the Monterey Bay (EPA Grant R9#03-238). The Salinas River extends approximately 120 miles from the river's headwaters in San Luis Obispo County, near Santa Margarita, and flows north/northwest and discharges into the Monterey Bay National Marine Sanctuary near Moss Landing in Monterey County (EPA Grant R9#03-238). The Nacimiento and San Antonio reservoirs, located in the upper watershed, serve as storage and flood control for the Basin.

Ground water recharge in Salinas Valley is principally from infiltration from the Salinas River, Arroyo Seco Cone, and to a much lesser extent, from deep percolation of rainfall (White Paper, 1995). Deep percolation of applied irrigation water is the second largest component of the ground water budget, but because it represents recirculation of existing ground water rather than an inflow of "new" water, it is not considered a source of recharge (White Paper, 1995). Nitrate contamination of ground water poses a significant threat to the beneficial use of ground water for drinking water and for some agricultural water uses (White Paper, 1995). Nitrate concentrations exceed drinking water standards in some parts of the Basin (MCWRA, 1997). The principal source of nitrates to ground water (White Paper, 1995). (White Paper, 1995).

Seawater intrusion is another source of inflow to the Basin, but because it is not usable freshwater it is also excluded as a source of recharge (White Paper, 1995). Historically, ground water flowed from subareas to the south and east through the (Pressure) and seaward to discharge zones in the walls of the submarine canyon in Monterey Bay (Durbin et al 1978; Greene 1970). Within the Pressure subarea, due to the impermeable nature of the clay aquitard above the 180-Foot Aquifer,

- 9 -

recharge from precipitation, agricultural return flows, or river flow is nil (DWR, 2003). Instead, recharge is from underflow originating in Upper Valley areas such as the Arroyo Seco Cone and Salinas River bed or the East Side subarea, and more recently, from seawater intrusion (DWR, 2003). Heavy pumping of the Pressure-180 Foot and Pressure-400 Foot aquifers has caused significant seawater intrusion into both of these aquifers, which was first documented in the1930's (DWR 1946a). Ground water flow in the northernmost area of the Pressure subarea has been directed from the Monterey Bay inland since this time (DWR, 2003). With increased pumping in the East Side subarea since the 1970's, ground water flow is dominantly northeast in the Pressure's central and southern locations (DWR, 2003).

Declining ground water levels in the Pressure and East Side subareas, Basin overdraft, ground water contamination, including nitrate and seawater intrusion are serious concerns for the Agency. (EPA Grant R9#03-238)

1.5.2 Program Objectives

The Agency is charged with management of the Basin's ground water resources. Much of the Agency's investigative work pertaining to the occurrence and use of ground water is to identify the quality, quantity, and temporal trends of ground water resources within the County. A network of monitoring wells provides the information needed to manage and protect ground water resources and sustain beneficial uses. In order for the Agency to develop projects to mitigate problems, such as seawater intrusion, local ground water overdraft, and high nitrate concentrations, the Agency must first implement an effective and accurate monitoring program to identify the extent of the potential problem.

The Ground Water Quality Monitoring Objectives are:

-continued monitoring of the ambient ground water quality, including general minerals -continued monitoring of coastal aquifers (including Pressure Deep Aquifer) for detection of advancing seawater intrusion

-continued monitoring to determine distribution of conductivity in ground water

-continued monitoring to determine distribution of nitrate in ground water and identification of problem areas

Ambient ground water quality will be used to establish a cohesive and succinct Water Quality Management Plan in accordance to the work begun under EPA-I and continued under EPA-II. For the purposes of this QAPP, the EPA-I grant has funded the Agency to develop this QAPP. The EPA-II grant is funding the Agency to implement the sampling described in the QAPP.

1.5.3 Program Goals

The ground water monitoring objectives in the Salinas Valley will be met by the goal of sampling all 344 wells located throughout the four subareas within the Salinas Valley Ground Water Basin, during the 2007 summer field season.

The ground water monitoring objectives along the coast, specifically located within the Pressure subarea will be met by the goal of sampling all 85 monitoring wells, during the 2007 summer field season.

The Agency's overarching goal for this program is the continued monitoring of the Basin's ambient ground water for use in the management of this important resource, and *not* for the purpose of regulatory control.

- 10 -

1.6 PROJECT/TASK DESCRIPTION

1.6.1 Work Statement and Produced Products

The Salinas Valley Ground Water monitoring will sample 344 wells located throughout the Salinas Valley Ground Water Basin for ten constituents (Table 1). Each well will be sampled once. Samples will be collected during the 2007 summer agricultural growing season and analyzed for a complete mineral panel. The Coastal Ground Water monitoring will sample 85 wells located within the area of historic seawater intrusion. Each well in the Coastal Program will be analyzed for complete mineral panel and the two remaining sampling events will by analyzed for partial mineral panel (three constituents) (Table 1). All water monitoring samples will be delivered the same day as collected to the contract laboratory for analysis.

All ground water sampling locations are accessible using a 4-wheel drive vehicle. All samples will be collected as a grab sample. All sampling locations will be recorded using global positioning system (GPS) equipment, and digital pictures will be taken at each site.

After laboratory analysis and data validation is completed, a technical memorandum (EPA II, XP-96995301 Task 2 Water Quality Assessment) will be written and submitted to US EPA. The technical memorandum, EPA II, XP-96995301 Task 2 Water Quality Assessment, will include result tables for chloride, nitrate, and specific conductivity, and maps of chloride, nitrate, and specific conductivity gradient contours.

1.6.2 Constituents to be monitored and measurement techniques

Samples will be sent to an off-site laboratory for analysis. Ground water samples will be analyzed for either complete or partial mineral panels. A complete mineral panel includes calcium, cationanion balance, chloride, conductivity, magnesium, nitrate, pH, potassium, sodium, sulfate, and total alkalinity. A partial mineral panel consists of chloride, conductivity, and nitrate.

Sample analysis will be preformed at the Monterey County Consolidated Chemistry Laboratory (CCL), which is part of the Environmental Health Department. Listed below is the laboratory's contact information and ELAP Certification number.

Laboratory Name	Contact Information	Abbreviation
Monterey County Consolidated Chemistry Laboratory ELAP Certification No 1395	1270 Natividad Road Salinas, CA 93906 Phone: 831-755-4516 Fax: 831-755-4852 http://www.co.monterey.ca.us/health	CCL

- 11 -

1.6.3 Project Schedule

The proposed project schedule is summarized below.

Prior to Sample Collection	
January 2006 - January 2007	: Develop project strategy
15 January, 2007	: Submit Draft QA Project Plan
22 March, 2007	: Receive review comments on QA Project Plan from US EPA
6 July, 2007	: Submit Draft Final QA Project Plan
13 July, 2007	: Obtain QA Project Plan approval (to begin fieldwork)
20 July, 2007	: Submit Final QA Project Plan (signatory copy) EPA R9#03-238; X-97994701-0
Sample Collection	
August 2007 - September 2007 August 2007 - September 2007	: Coastal Ground Water (each well 3x, once per month) : Salinas Valley Ground Water (each well 1x)
Post Sample Collection	
November 2007	: Compile all remaining laboratory analyses reports
1 - 15 December, 2007	: Evaluate laboratory data for QA/QC requirements
15 December, 2007	: Copy of analytical results sent to well owner/operators
16 - 31 December, 2007	: Summarize and tabulate data
January 2008	: Write Technical Memorandum (EPA II, XP-96995301 Task 2 Water Quality Assessment)
March 2008	: Submit Technical Memorandum (EPA II, XP-96995301 Task 2 Water Quality Assessment) to US EPA

1.6.4 Geographical Setting

The Salinas Ground Water Basin encompasses approximately 537.5 square miles (1,392 km²). The regional ground water flow is to the northwest. Seawater intrusion is a result of coastal pumping (Figure 3). Ground water pumping can dramatically impact localized coastal ground water flow.

1.6.5 Constraints

Ground water samples must be taken from the well while the pump is operating to ensure that the sample is representative of the aquifer and not standing water within the well casing. The Agency wants to measure the water quality when the aquifers are stressed due to pumping. For this reason the 2007 field sampling season will coincide with the agricultural irrigation season.

- 12 -

1.7 DATA QUALITY OBJECTIVES FOR MEASUREMENT DATA

This section describes the data objectives of the project and defines the measurement performance criteria deemed necessary to meet those objectives.

1.7.1 Objectives and Project Decisions

In Monterey County the Salinas Valley and Coastal Ground Water ambient monitoring programs are designed to characterize the ground water quality conditions of the Basin. All data generated from the sampling program in this project are tabulated as they have been over the many years of the program. Data generated from these monitoring activities allows the Agency to track changes in ground water quality over time and to assess potential impacts to ground water in the Basin. Water resource management and policy decisions may follow based on maps and tabulated data generated as a part of this project (program).

For the coastal ground water sampling program, the general mineral data are evaluated to determine if seawater intrusion is progressing landward as indicated by increasing well chloride values. The chloride values for all wells are evaluated, and then the 500mg/L chloride isochlor contours are mapped for the two coastal aquifers. When the maps are published, the information generated by MCWRA staff and approved by the MCWRA Board of Directors, is posted and passed on to Monterey County departments, regional government regulatory agencies, and public / private entities via the MCWRA web page, presentations, public meetings, and networking.

Monterey County departments such as the Planning Department and Health Department utilize the advancement of seawater as it relates to potable water and public health, while the agricultural community becomes aware of the proximity of their wells to the intrusion advancement, and the possible need for funds to drill new, deeper, wells and destroy the older high nitrate wells. Actions by regulators, depending on the entity, are related to prioritization of Regional Watershed and Water Quality Action Plans, and the associated success of MCWRA capital projects to halt seawater intrusion as governed by the State Water Resources Control Board adjudication process.

Actions by the MCWRA after the landward advancement of seawater have been ongoing for many years. Actions include consideration of more stringent Monterey County well drilling ordinances for assuring the continued prevention of cross-aquifer contamination in the coastal Salinas Valley, "Zone 6 Drilling Standards", April 19, 1988; the development and implementation of the Monterey County Recycling Projects, a tertiary treatment plant and treated water distribution system, to help further reduce agricultural pumping in the coastal Salinas Valley for halting seawater intrusion; and future use of these data will be utilized by the newly established Seaside Watermaster for comparison to and the development of the Monterey Peninsula seawater intrusion front.

For the Salinas Valley general mineral ground water sampling program, nitrate data tabulation and map representation has been the focus of the MCWRA for many years. All results over the laboratory's practical quantitative limit generated from this program are tabulated to evaluate the minimum, maximum, median, and mean value of nitrate as NO₃ in mg/L for each of the Salinas Valley Hydrogeologic Subareas.

For the Salinas Valley monitoring program, the Agency sends the general mineral testing results, including nitrate, to the well owners/growers who operate the wells sampled. Also, in this transmittal, the well operators are also provided with a conversion sheet of the nitrate concentration from mg/L nitrate as NO₃ to pounds of nitrate per acre inch of water, agricultural terms. If a nitrate

- 13 -

Monterey County Water Resources Agency EPA R9#03-238 X-97994701-0 2 August, 2007 an incorporate this available nitrate into

value in ground source water is elevated, then that growers can incorporate this available nitrate into their fertilizer crop scheduling. This is a method for growers to reduce applied nitrate to crops, while maintaining maximum crop productivity.

And, as with the Coastal monitoring program, the tabulated and mapped Salinas Valley nitrate data are posted and passed on to Monterey County departments, regional government regulatory agencies, and public / private entities via the MCWRA web page.

The MCWRA uses the well nitrate data during the technical well application review process. Monterey County Health Department (Heath Department) issues well permits after the Agency provides a technical review of well applications for new, abandoned, or repaired wells. The well application proposal is evaluated with other well construction and water quality within a one miles radius of the new well and represented on a map. Agency staff makes qualitative recommendations to the Health Department on the new well's sanitary seal based on other well seals, the perforated intervals, and the nitrate values of wells in the area. The final decision for the well construction is made by the Health Department after the well drilling progresses.

Actions taken by the MCWRA are conditional. If extreme nitrate values are observed in agricultural production wells, then re-sampling of the wells may take place to confirm the elevated concentrations and may lead to increased sampling points for wells in the same vicinity and with the same well design. Continued increases in Salinas Valley ground water nitrate values could lead to special nitrate investigations on movement of nitrate in ground water and also outreach to the public on the reduction of nitrate to the environment.

1.7.2 Action Limits/Levels

Since the overarching goal for this project is the continued monitoring of ambient ground water, the Agency has set no specific water quality standards. As a result, the laboratory's practical quantitation limits (PQL) will serve as the Project Action Levels (PALs). Table 1 provides a listing of the parameter to be sampled and a summary of the laboratory's method detection limit, those minimum concentrations that can be detected above the instrumental background/baseline signal noise. Table 1 also provides the PQL, lowest calibration standard and PALs required by the Agency for the QAPP. The quality limits listed are deemed acceptable by the Agency to meet the project objectives.

1.7.3 Measurement Performance Criteria

The objective of data collection for this Monitoring Project is to produce data that represent the *in situ* conditions of the ground water. This objective will be achieved by using accepted standard methods for water collection and analysis and defining data quality indicators (DQIs) for each analytical parameter. The DQIs include accuracy, precision, comparability, sensitivity, completeness, and representativeness and are defined below and presented in Table 2. Some DQIs will be assessed quantitatively, while others will be qualitatively assessed. Example calculations have been provided for quantitative assessments and appropriate quality control (QC) samples have been identified. Laboratory Data Quality Objectives are given in Table 3.

Accuracy, or bias, is a measure of how close a result is to the expected value of the target analyte in a sample. Accuracy will be determined by the analysis of certified reference materials and matrix spikes, where the results can be compared with an expected value and expressed as %recovery. This is an assessment of laboratory analytical methods. For Laboratory Control Samples (LCS), it will be expressed as %recovery by the following equation:

- 14 -

where,

X = Measured concentration T = True spiked concentration

or, for Matrix Spike (MS) samples, by the following equation:

where,

B = Measured concentration of spiked sample A = Measured concentration of unspiked sample

T = True spiked concentration

The frequency of the LCS and MS samples associated with the analytical parameters will be 5%. MS and MSD samples will be spiked at 3-10 times the native sample concentration.

Accuracy/bias as related to contamination involves both field and laboratory components. Field blanks will be collected at a frequency of 5%. Laboratory blanks will be prepared and analyzed at a one per batch or 5% frequency.

Precision is concerned with the ability to quantitatively repeat results. To demonstrate the precision of a method or instrument, field duplicates will be collected, analyzed, and their results compared. Precision is expressed as relative percent difference (RPD) by the following equation:

RPD (%) =
$$\frac{IX_1 - X_2I}{(X_1 + X_2)/2} \times 100$$

where,

 $\begin{array}{l} X_1 = \text{Original sample concentration} \\ X_2 = \text{Duplicate sample concentration} \\ IX_1 - X_2I = \text{Absolute value of } X_1 - X_2 \end{array}$

Field duplicates will be collected at a frequency of 10% for the first two sampling events. If the criterion of <25% RPD is met, then the remaining field duplicates will be collected at a 5% frequency. Laboratory duplicates will be prepared and analyzed at a one per batch or 5% frequency.

Comparability of the data can be defined as the similarity of data generated by different monitoring programs. Comparability helps to measure the scientific coherence and validity of a project. This objective is addressed primarily by using standard sampling and analytical procedures. Additionally, comparability of analytical data is addressed by result comparison of certified reference materials.

Sensitivity of the analytical instrument or method is the ability to detect and quantify an analytical parameter at the concentration level of interest. Sensitivity can be evaluated by method or instrument detection limit studies (MDL and IDL) or calculated practical quantitative limits (PQL) and method report limits (MRL).

- 15 -

Completeness is a measure of the amount of successfully collected and validated data relative to the amount of data planned to be collected for the project. Project completeness is typically based on the percentage of the data needed for the program or study to reach statistically valid conclusions. Because the SVIWMP is a monitoring program, data that are not successfully collected for a specific sample event or site can typically be recollected at a later sampling event. For this reason, most of the data planned for collection can not be considered statistically critical, and it is difficult to set a meaningful objective for data completeness. However, some reasonable objectives for the data are desirable, if only to measure the effectiveness of the Monitoring Program. %Completeness will be expressed by the following equation:

where,

N = Number of usable results T = Total number of samples planned to be collected

A completeness goal of 90% has been set for the ground water monitoring program.

Representativeness can be defined as the degree to which the environmental data generated by the monitoring program accurately and precisely represent actual environmental conditions. This objective is addressed by the overall design of the monitoring program. Specifically, assuring the representativeness of the data is addressed primarily by selecting appropriate locations, methods, times, and frequencies of sampling for each environmental parameter, and by maintaining the integrity of the sample after collection. Representativeness judges how well a single sample can describe the conditions of an entire sample population. Accurate, artifact-free sampling procedures and appropriate sample homogenization achieve representativeness.

1.8 TRAINING REQUIREMENTS/CERTIFICATION

1.8.1 Training of Field Personnel

A specialized training requirement for this project is for the use of Global Positioning Systems (GPS) Technology. Training in the use of handheld GPS units and software will be performed on an individual basis between the trainer and the trainee. Training will be provided by staff experienced in the use of GPS and Geographic Information Systems (GIS).

Field personnel will also be given initial instructions prior to the beginning of sample collection activities. These initial instructions will help familiarize the field personnel with sample collection containers, sample handling techniques, chain-of-custody forms, and sample transport. New field personnel will be accompanied by a trainer in the field as part of the initial instructions. All field samplers have completed a four-hour training session in the field. Training included confirmation of the well ID electrical meter tag number and MCWRA tag number, recognizing the appropriate sampling port, sample collection technique, proper handling of the sample during transportation to the lab, and accurate completion of the chain-of-custody forms. The completion of field training session has been documented in the Agency's personnel files.

All field personnel will follow sample collection procedures from accepted methods for the collection of ground water. Sample collection will follow protocols in accordance with recommended guidelines established by the U.S. Geological Survey (USGS) for ground water collection as described in the

- 16 -

Monterey County Water Resources Agency EPA R9#03-238 X-97994701-0 2 August, 2007 a. U.S. Geological Survey, Techniques

National Field Manual for the Collection of Water-Quality Data, U.S. Geological Survey, Techniques of Water-Resources Investigations, Book 9, Chapters A1-A9, Field personnel will be familiar with the above-mentioned document.

Field personnel will also read and be familiar with this Quality Assurance Project Plan (QAPP) prior to beginning any sample collection activities.

1.8.2 Training of Laboratory Personnel

No specialized training of laboratory personnel is required for this project. The ground water constituents to be analyzed by the laboratory are routine and do not require additional expertise. In addition, the laboratory's QA plan notes that analysts 'must conduct sufficient preliminary tests using the methodology and typical samples to demonstrate competence in the use of the measurement procedure'.

1.8.3 GPS Training Documentation

Documentation of field personnel training for GPS includes: the name of the staff member being trained, the training date, the name of the trainer (instructor), and a checklist of satisfactory completion of each step. These training records are stored inside a monitoring binder and filed in the Agency's Water Quality Section. A sample GPS training record is attached in Appendix A.

Training documentation of laboratory personnel for routine methods is kept on file at the Consolidated Chemistry Laboratory (CCL). The CCL has written a policy regarding laboratory personnel training in their lab QA plan.

1.9 DOCUMENTATION AND RECORDS

1.9.1 QA Project Plan Distribution

The MCWRA Hydrologist/ Team Lead will safeguard the original QAPP and any subsequent revisions (both hard and electronic), plus keep a record of the distribution list in order to send out amendments to the QAPP and retrieve any obsolete versions (from the individuals listed earlier in section 1.3).

1.9.2 Field Documentation and Records

All field documentation generated by the sampling program will be kept on file in the Water Quality Section of the Agency. Field documentation includes field sheets, chain of custody (COC) forms, photographs, and labels (see Appendix B for examples of each).

1.9.2.1 Field Sheets

Field sheets are used to aid in the identification of each ground water source (well). The field sheets list the name of each well (as assigned by the well owner) and the State Well Number. The field sheets also contain a section that describes who the sampler should contact in order to have a well turned on, where to find the sample port, etc. The sampler is responsible for recording the sample date and time on the field sheet. Site observations should be written in the comments section of the field sheet, and initialed by the sampler. Site observations may include information such as detailed directions to the well location, changes to the electrical meter tag number, and the owner contact name and phone number. Field sheets also contain PG&E electrical meter numbers, which can be either verified or updated while the sampler is in the field.

- 17 -

Field sheets are double-checked by the sampler for completeness and accuracy while still in the field. The sampler should look for: incomplete and/or missing data/omissions, incorrect or invalid information, and clarity problems. Any discrepancies should be cleared up before the sampler leaves the field. Data that has been entered by one field sampler will be reviewed by a different field sampler to verify that no transcription errors have occurred. These data entry reviews will take place at least weekly.

Original field sheets are categorized (according to Coastal wells or Salinas Valley wells) inside binders which are kept in the Water Quality Section at the Agency for a period of 10 years. After such time, the copies are transferred to the Monterey County Record Retention Center and archived for a period of 5 years.

Data collected on field sheets will also be recorded electronically and stored in an Access database inside a shared network drive that is backed-up on a daily basis. These electronic records will be retained permanently.

1.9.2.2 Chain Of Custody (COC) Forms

Chain-of-custody (COC) forms will be provided by the Consolidated Chemistry Laboratory and filled out while the sampler is in the field. The COC will accompany the samples at all times in order to insure the custodial integrity of the samples. A sample is considered to be in custody if it is: in someone's physical possession, in someone's view, locked up, or secured in an area that is restricted to authorized personnel.

Care should be taken to protect the COC from physical damage (i.e., water, wind, etc). The COC will have the following information:

- Client Code
- Client Name
- Client Address
- Client Phone Number
- Client Fax Number
- Report Attention
- Sampler Name
- Collection Date
- Collection Time
- Sample Site (identified by state well identification number) or QC sample (if appropriate)
- Sample Type (all of the samples in this project will be grab samples)
- Matrix (all of the samples in this project will be ground water samples)
- Analyses Requested

Upon relinquishing the sample(s) to the Consolidated Chemistry Laboratory, the sampler will sign and date the COC form. Lab personnel will then receive the sample(s), mark the date and time received, assign unique lab identification numbers (lab IDs) to each sample, and sign the COC form. The signed COC form is then photocopied; the lab keeps the original, and a copy is given to the sampler.

Hard copies of COC forms are categorized (Coastal wells or Salinas Valley wells) inside binders which are kept in the Water Quality Section at the Agency for a period of 10 years. After such time,

- 18 -

the copies are transferred to the Monterey County Record Retention Center and archived for a period of 5 years.

Electronic COC information is also stored in an Access database inside a shared network drive that is backed-up on a daily basis. These electronic records will be retained permanently.

1.9.2.3 Photographs

The Agency maintains a photo catalog which contains photographs of the Coastal well site locations. The photo catalog is carried into the field to assist with the identification of each well. If there are significant changes to the appearance of the well site, then staff will take a new digital photo. The old photo in the catalog will then be replaced with a copy of the new photo. Photographs will be taken of the Salinas Valley wells after confirming the correct well location of each.

Two photographs of each well location will be taken using a high resolution digital camera. One photograph will be from a distance of 100 ft. or more to aid in the identification of the correct site location. The second photograph will be a close up of the well and pump head, which will be used to verify location of the correct sampling port. Printed hard copies of these two photographs for each well will be kept in the photo log book and labeled with the state well identification number as listed on the field sheets.

Photographs will serve to help verify information entered into the field sheets. Photographs are stored in an electronic database and labeled according to site number and date last photographed. Previous photos will be archived electronically for retrieval purposes if the need arises.

1.9.2.4 Labels

Labels for each sample site are pre-printed on Avery (size 5163) sheets (10 labels per sheet). Indelible ink will be used on the labels and clear packing tape will be applied over the label to prevent it from coming off if it gets wet. Each label will have the following information:

- Sample Site (pre-printed)
- · Collection Date (to be filled out in the field)
- Collection Time (to be filled out in the field)
- Analyses Requested (complete or partial mineral panel)
- Sampler Name (to be filled out in the field)
- Comments (if any)

The sample site name (state well identification number) will serve as the unique identifier for each sample (e.g. 14S/02E-08M02). When the samplers arrive at the CCL a unique in-house lab number is assigned to each sample.

1.9.2.5 Field Quality Control Sample Records

Quality Control samples from the field will be identified using the state well identification number plus either -1 or -2 (e.g. 14S/02E-08M02-1, for a field blank).

- -1 = Field Blank
- -2 = Field Duplicate

- 19 -

1.9.3 Laboratory Documentation and Records

The Consolidated Chemistry Laboratory will keep a sample receiving log containing the completed COC forms submitted with the samples collected for this project. The CCL will keep records of all analyses performed as well as associated QC information, including: laboratory blanks, laboratory duplicates, matrix spikes, matrix spike duplicates and laboratory control samples. Hard copy data of analytical results will be maintained for three years by the CCL. The CCL maintains a Laboratory Information Management System (LIMS) which will be used to store electronic data.

The data generated by the CCL for each sampling event will be compiled into individual data reports. The individual data reports will include the following information:

- Sample results and associated Quantitative Limits (QLs)
- Cation-Anion Balance Sheet
 OC check sample records an
 - QC check sample records and acceptance criteria for the following:
 - Laboratory Control Sample(s)
 - Matrix Spike(s)
 - Matrix Spike Duplicate(s)
 - Analytical Duplicate(s)
 - Method Blank(s)
- Project narrative including a discussion of problems or unusual events (including, but not limited to, topics such as: receipt of samples in incorrect, broken, or leaky containers, with improperly or incompletely filled out COC forms; receipt and/or analysis of samples after the holding times have expired; summary of QC results exceeding acceptance criteria; etc.)

The above information is logged into the LIMS database at CCL.

The Public Health Chemist of the Consolidated Chemistry Laboratory will be responsible for reviewing, validating, and/or qualifying results on the data reports. Any deviations from sample preparation, analysis, and/or QA/QC procedures will be documented. Departure from QC acceptance limits will be highlighted. Once the data reports are finalized, the hard copy will be sent to the Project QA Manager at the Agency.

At the end of the sampling season, all data for both programs (Coastal and Salinas Valley) will be electronically transferred to the Agency. After data verification, the Agency Hydrologist/ Team Lead will upload the data to the Agency's Water Resources Agency Information Management System (WRAIMS) relational database.

1.9.4 Technical Reviews and Evaluations

Technical reviews and evaluations are limited to Field Activities and Laboratory Data Review Checklists.

1.9.4.1 Field Activities Review Checklist

Field personnel will be required to fill out a Field Activities Review Checklist as part of the doublecheck process upon returning from the field after each sampling event (see Appendix C).

1.9.4.2 Laboratory Data Review Checklist

Laboratory data reports from the CCL will be routed to the Project QA Manager at the Agency, who will do a preliminary assessment of the data. The data reports will then be given to the Agency

- 20 -

Hydrologist/ Team Lead who will be responsible for completing a Laboratory Data Review Checklist (see Appendix C).

1.9.5 Technical Memorandum

The Agency Project QA Manager is responsible for the preparation of the technical memorandum. The technical memorandum will be written in the "post sample collection" phase (see section 1.6.3). The technical memorandum will be submitted to USEPA for review by the EPA Region 9 Project Manager.

The technical memorandum will contain the following elements:

- Table of results for Chloride
- Table of results for Nitrate
- Table of results for Specific Conductance
- Map of Chloride contours for 500 mg/L values
- Map of Nitrates showing those sites which have values above and below the Drinking Water Standard Limit of 45 mg/L (nitrate as NO3)
- Map of Conductivity contours

2.0 DATA GENERATION AND ACQUISITION

2.1 SAMPLING DESIGN

In the Salinas Valley, there are four hydrogeologic subareas: Pressure, East Side, Forebay, and Upper Valley. All four subareas were selected using a directed sampling design approach. These subareas were selected deliberately based on knowledge from previous monitoring work to contain analytes of interest, specifically nitrate and conductivity in the Salinas Valley Program, and chloride and conductivity in the Coastal Program. Actual sampling sites/wells within the Salinas Valley Basin Monitoring Program were chosen using a non-deliberate sampling approach. The wells included are acquired opportunistically. Site accessibility is a key issue for sampling. Permission of property owners must be secured before accessing private wells.

There are just over 1700 active wells in the Salinas Valley. Of this total number of wells, 344 wells make up the Salinas Valley Ground Water program and 85 wells make up the Coastal Ground Water program. The wells that make up these two programs have all been sampled in the past; some have data sets as far back as the 1950's, when this was a State of CA Department of Public Works (now the Department of Water Resources) program. The Agency wants to keep as complete and continuous a data set for each of these wells as possible.

Due to the time constraints the Agency is facing during this shortened 2007 field season, June -September, staff will prioritize which wells within the Salinas Valley portion of this project will be sampled. Wells to be sampled first will be located within approximately one mile radius of municipalities and industries (such as vegetable packing plants). We refer to these areas as high beneficial use areas. Ground water wells will be identified by State Well Numbers (Township, Range, Section, and Subsection).

All wells are high production agricultural wells. All wells are sampled in the same way, if the pump is in operation then a sample will be collected. If the pump if not operating then the field sampler will note it on the field sheets and come back to the well at a later date when the well is in operation. The pump must be operating for a sample to be collected. The age of well does not alter sampling

- 21 -

protocols. If a well is found to have been abandoned since the Agency last sampled the well, a notation will be made on the field sheets and the well will be removed from future sampling efforts.

2.1.1 Salinas Valley Ground Water

While it is known that high levels of nitrates exist in some aquifers of the Salinas Valley Ground Water Basin, a significant sampling effort to determine the extent in the ground water has not been conducted by the Agency for several years. There are a total of 344 sample locations within the Salinas Valley monitoring program. Sample locations are operational ground water wells, the majority of which are used for agricultural irrigation. The Pressure subarea has 158 wells, the East Side subarea has 66 wells, the Forebay has 84 wells, and the Upper Valley has 35 wells (Figures 4-7). Each of these wells will be sampled once during the 2007 summer field season (July-September). The primary criterion currently used to determine if a well will be included in the Salinas Valley monitoring program has been its status as previously sampled. This program is an ongoing ambient ground water monitoring program and continuity in sampling the same wells each field year is of prime importance, especially for water quality trend analysis. Other factors that are important in deciding if a well should be included in the monitoring program are; copy of the well completion report (commonly referred to as the driller's log), location of the perforation interval along the well casing to determine which aquifer is sampled, age of the well, and construction method used to drill the well. Additionally it is useful to know the proximity of the well to other water use (industrial, municipal, or domestic) areas. A list of Salinas Valley well names and locations are given in Table 4. All wells on this program are planned to be part of the monitoring design for subsequent years. Until these monitoring wells are abandoned or destroyed, they will remain part of this program.

2.1.2 Coastal Ground Water

The Agency currently conducts a seawater intrusion monitoring and mapping program (EPA II). This program will continue to evaluate the extent and status of seawater intrusion in the coastal areas of the Salinas Valley Basin (EPA II). The Coastal portion of the ground water program contains 85 wells, most of which are located in the Pressure subarea (Figure 8). Each well will be sampled three times, once each month of the summer 2007 field season (July-September). The first sample collection at each well will be analyzed for a complete mineral panel (Table 1), and following two collections will be analyzed for a partial mineral panel (Table 1). There are 21 wells located in the Pressure 180-Foot Aquifer, 52 wells within the Pressure 400-Foot Aquifer, two wells with perforations within both the Pressure180-Foot and 400-Foot Aquifers, four wells are located within the Pressure Deep Zone Aquifer, three in the East Side Deep Aquifer, one in the East Side Shallow Aquifer, and one in the Prunedale Aquifer. The principal criterion for inclusion in the Coastal monitoring program is historical sampling and well availability. Additional criteria for selecting a well for inclusion into the Coastal monitoring program are: a well completion report, location of the perforation interval along the well casing to determine which aquifer is sampled (180, 400, or deep zone AQ), well age, and well construction type. A list of Coastal sites and their representative aquifers are listed in Table 5.

It can not be stressed enough how important the continued monitoring of these ground water wells are for the Agency to meet its mission of monitoring the quality of the County's ground water resources. Some of these well have been sampled since the 1950's and the loss of such a long term water quality record within the County of Monterey would irreplaceable.

- 22 -

2.2 SAMPLING METHODS

The objectives of the sampling procedure are to minimize changes in ground water chemistry during sample collection and transport to the laboratory, and to maximize the probability of obtaining a representative, reproducible ground water sample. This well-volume purging procedure provides a reproducible sampling technique with the goal that the samples obtained will represent water quality over the entire screen interval of the well.

Standing water in the well casing can be of a different chemical composition than that contained in the aquifer to be sampled. Solutes may be adsorbed on to, or desorbed from the well casing material, oxidation may occur, and biological activity is possible. Therefore, the stagnant water within the well must be purged so that the sample is representative of the aquifer. As a result, a well may be sampled only after the pump has been in operation for at least 15-20 minutes.

All the wells included in this project, from both the Salinas Valley area and the Coastal monitoring area are high production agricultural wells that contain deep turbine pumps operating at 500-1200 gallons per minute (gpm). Over the years of managing the ambient monitoring program, the Agency has determined that operating a deep turbine pump for 15-20 minutes before taking a sample is sufficient time to clear the entire well casing of three well volumes for ensuring a representative well sample. For referencing well casing volume, the Agency uses the well casing size provided in the well completion reports (driller's log) for each of the wells included in this monitoring program (National Field Manual for the Collection of Water-Quality Data, Chapter A2).

Sample bottles and caps are rinsed three times with ambient ground water prior to collection. The sample container is then filled, tightly capped, and labeled. No field sample filtration is required. Samples are put into a cooler with ice immediately and maintained at 4°C and delivered to the laboratory daily. See Table 6 for sample collection requirements. Extra sample containers, caps and field supplies will be carried in the truck as back-up should any problem arise in the field. Additionally, the Field Sampler will carry and maintain an updated hardcopy of the QAPP in the field to be used as a reference.

The following precautions will be followed in order to limit sampling error at the wellhead:

- Operate the pump long enough to produce water that is representative of the aquifer and not stagnant water from the casing.
- Take samples at the wellhead or near the wellhead and away from fertilizer injection ports.

Sample collection will follow protocols in accordance with recommended guidelines established by the U. S. Geological Survey (USGS) for ground water collection as described in the <u>National Field</u> <u>Manual for the Collection of Water-Quality Data</u>.

The National Field Manual for the Collection of Water-Quality Data, U.S. Geological Survey, Techniques of Water-Resources Investigations, Book 9, Chapters A1-A9 is maintained as a webbased document and is located at http://pubs.water.usgs.gov/twri9A. Updates and revisions for the National Field Manual can be found using this web-based approach.

2.3 SAMPLE HANDLING AND CUSTODY

This section describes how all samples will be treated after collection, during transport, and upon arrival at the CCL. It also includes information on proper sample disposal after laboratory analysis.

- 23 -

2.3.1 Sample Containers and Preservatives

Sample containers to be used in this project are high density polyethylene (HDPE), one pint (~0.5 L) and 0.5 gallon (~2 liter) sizes, for partial mineral or complete mineral analyses, respectively. The Agency has used these same sample container types during previous years of this ongoing ambient monitoring program and has never had any problems with container contamination issues. Field blanks will be closely monitored and, should a problem arise, corrective actions will be taken. Only one container (pint or half gallon) is needed per sampling site to provide the necessary volume to run the required lab analyses (see Table 6). Sample container Company). The caps for the containers are packaged separately. The containers and caps are clean upon receipt, as long as they arrive with the outer cardboard packaging intact. The containers will be kept in a closed, dry environment away from the outside elements. Sterility is not of importance because this sampling project does not include microbiological testing. As previously mentioned, all containers and caps will be rinsed three times with ambient sample water prior to sample collection.

Sample containers are labeled with pre-printed labels, which lists which panel of analytes is requested, either complete mineral or partial mineral. The collection date, collection time, and sampler name are recorded in the field with an indelible marker. After being filled out, labels will be covered with clear plastic tape (packaging type) to protect the labels from destruction during transport.

No chemical field preservation of the samples is required. All samples will be kept at 4±2°C.

Preservation of samples, if required prior to analysis, will be the responsibility of the contract lab (CCL). Part of the CC lab sample receiving protocols includes lab personnel verifying, at the time of sample receipt, if any samples require lab preservation. Refer to Table 6 for listings of preservatives for specific analytes.

2.3.2 Sample Packaging and Transport

All samples will be handled, prepared, transported and stored in a manner so as to minimize contamination and spills. After collection, sample caps will be checked for tightness, and the samples will be put in ice chests immediately. During travel between sites, ice chest lids will be kept tightly closed in order to keep the samples at the correct temperature and protect them from sunlight. Ice used for maintaining sample temperature will be double-bagged inside durable plastic bags (Ziploc type) and be of sufficient quantity so that all samples will stored at 4±2°C. Maximum holding times for specific analytes are listed in Table 6.

2.3.3 Sample Custody

Chain of custody (COC) procedures require that possession of samples be traceable from the time the samples are collected until completion and submittal of the analytical results. A completed chain of custody form is to accompany the samples to the contract laboratory (CCL). Requirements for COC paperwork can be found in Section 1.9.2.2 of this document.

All samples collected for this project will be transported from the field to the CCL via an Agency vehicle. The field sampler will deliver the samples directly to the CCL daily; there will be no intermediary transfers. Samples need to arrive at the CCL no later than 15:00, to ensure log-in and laboratory preservation. Personnel at the CCL will examine the samples for correct documentation and holding times. The CCL will follow sample custody procedures as outlined in their QA plan (see Appendix D).

- 24 -

2.3.4 Sample Disposal

All samples remaining after successful completion of analyses will be disposed of properly. It is the responsibility of the personnel at the CCL to ensure that all applicable regulations are followed in the disposal of samples or related chemicals. Sample disposal procedures used by the CCL are discussed in their QA plan (see Appendix D).

2.4 ANALYTICAL METHODS

All samples will be analyzed at the County Consolidated Chemistry Laboratory (CCL). Analyses will be performed following either EPA approved methods or methods from *Standard Method for the Examination of Water and Wastewater*, *18th Edition*, see Table 1 (CCL's QA Manual cites *18th Edition*, see Appendix D). Standard operating procedures (SOPs) from CCL have been included in Appendix D for each of the analyses. Should there be any deviation from these SOPs the Laboratory Director must contact the Project QA Manuager.

The CCL will submit a data report and associated QC results after analyses are complete to the Project QA Manager. This data report is described in Section 1.9.3. After a preliminary assessment the Project QA Manager will pass the data on to the Team Lead, who will review the data report and QC results and evaluate its quality and usability in addressing the Project objectives.

2.5 QUALITY CONTROL

2.5.1 Field Sampling Quality Control

The assessment of field measurements will be determined from the collection and analysis of field blanks and field duplicates. For this monitoring program the field blanks will be collected at one every 20 samples or a frequency of 5%. Field duplicates will be collected at a frequency of 10% for the first two sampling events. If the criterion of <25% RPD is met, then the remaining field duplicates will be collected at a 5% frequency. Analytical acceptance criteria and corrective actions for field QC are listed in Table 2.

Deionized (DI) water will be acquired from the CCL and kept at $4\pm 2^{\circ}$ C, while transported into the field. Field blank samples will be obtained by pouring DI water into a pint (~500 mL) HDPE sample container that has been triple-rinsed with DI water at the sampling location. The container will be tightly capped, placed in the cooler and delivered to the contract laboratory. Field blanks are labeled with the sampling location (State Well Number) followed by "-1".

Field blanks will be used to evaluate the collection process (from field sampling through sample analysis) for contamination from exposure to ambient conditions, from sample containers or from improper sampling and handling technique. If target analytes are found in field blanks, sampling and handling procedures will be reevaluated and corrective actions taken. Corrective actions may consist of, but are not limited to, re-training of field personnel, discussions with the contract laboratory, invalidation or qualifying of results.

Field duplicates will be collected for every analytical parameter. The duplicate sample will be collected immediately after collection of the native, following the same sampling protocols. Field duplicates are labeled with the sampling location (State Well Number) followed by *-2*.

Field duplicates will be used to evaluate the precision of the sample collection through analysis. The combined variability from sampling and analysis technique, in addition to sample heterogeneity, will

- 25 -

be assessed using field duplicates. If acceptance criteria are exceeded, field sampling and handling protocols will be reviewed and problems corrected. These may consist of, but are not limited to, additional training, revised sampling techniques and reevaluation of sampling location.

2.5.2 Laboratory Analyses Quality Control (Contract Laboratory)

The Monterey County Consolidated Chemistry Laboratory's (CCL) personnel are responsible for analytical Quality Control. Standard laboratory quality control elements include method blanks, laboratory control samples, analytical duplicates, matrix spikes and calibration procedures. Laboratory data quality objectives include QC acceptance criteria, frequency of analysis, and corrective actions. These data quality objectives and quality control elements for CCL are described in its QA Manual (Appendix D) and SOPs (Appendix D) and are listed in Table 3. After examination of these documents, the Agency believes that the laboratory will be able to meet the project data quality needs. Any deviation from these written procedures must be documented by the laboratory and reported to the Project QA Manager.

2.6 INSTRUMENT/EQUIPMENT TESTING, INSPECTION, AND MAINTENANCE REQUIREMENTS

Testing, inspection, and maintenance of laboratory equipment are the responsibility of the Monterey County Consolidated Chemistry Laboratory and are detailed in its QA manual in Appendix D.

2.7 INSTRUMENT CALIBRATION AND FREQUENCY

Instrument calibrations are the responsibility of the Monterey County Consolidated Chemistry Laboratory and acceptance criteria for calibrations are detailed in its QA manual in Appendix D.

2.8 INSPECTION/ACCEPTANCE REQUIREMENTS FOR SUPPLIES

2.8.1 Initial Inspection of Supplies

As mentioned previously in Section 2.3.1, sample containers are purchased in bulk from an outside vendor who specializes in supplying plastics to the beverage industry. An initial inspection will be conducted upon receipt of each shipment. Each shipment will be considered acceptable for use if *all* of the following are true:

- The shipment arrives with the outer cardboard packaging intact.
- The containers are the correct type (HDPE) and size (0.5 gal/~2L or 1 pint/~0.5L).
- The insides of the containers are dry.
- · The insides of the containers are free of dirt or any particulate matter.

2.8.2 Field Inspection of Supplies

Immediately prior to sample collection, field samplers will visually inspect each sample container for the following:

- Dirt or any particulate matter
- Cracks of any size
- Improper fit of the cap on the container

If the field sampler observes any of the above, then the container will be discarded and an acceptable container will be used instead.

- 26 -

2.8.3 Laboratory Inspection of Supplies

CCL will be responsible for establishing inspection and acceptance criteria for supplies that adhere to their internal QA/QC policies.

2.9 DATA ACQUISITION REQUIREMENTS (NON-DIRECT MEASUREMENTS)

Non-direct measurement data will not be used during this monitoring program. Should at some time in the future the Agency decide to use data from an external source, QA/QC requirements will be established. Should this occur, an addendum to this QAPP will be submitted to USEPA.

2.10 DATA MANAGEMENT

Data, as related to documentation and records, will be managed as outlined earlier in Section 1.9 of this QAPP.

In addition, the CCL will group QA/QC data under a separate client code so that QA/QC data can be filtered from regular sample data before being uploaded into the Agency's Data Management System (WRAIMS). This allows the Agency a greater flexibility both in quickly and easily accessing the data that included QA/QC samples for initial review, and increased flexibility in uploading and moving large data sets.

3.0 ASSESSMENT AND RESPONSE ACTIONS

This section lists review procedures that will be taken to ensure all the protocols outlined in the QAPP are consistently followed.

3.1 REVIEWS

3.1.1 Readiness Reviews

Water Resources Technicians/ Field Samplers will be trained by the Hydrologist/Team Lead before any field sampling begins. Training will cover proper sample collection and handling and the completion of all paperwork (COCs, field logbooks, etc). The Team Lead will ensure that Field Samplers have properly prepared all collection containers, paperwork and other supplies needed to complete a successful sampling event. Any problems discovered during the readiness review will be corrected before the Samplers begin work.

3.1.2 Field Reviews

The Team Lead will be responsible for overseeing that all field activities are incompliance with Agency protocols. The Team Lead will be available via phone should any questions arise while the Samplers are in the field. The Team Lead will also review all field paperwork such as COCs and field logbooks for completion. Additionally the field QC samples (field blanks and duplicates) will be used to evaluate the individual Sampler's technique. If problems are exposed they will be corrected straight away so that all further samples are valid. A stop-work order may be issued by the Project QA Manager at any time if a discrepancy or error is found that could negatively affect the data being collected.

- 27 -

3.1.3 Post Sampling Reviews

Post sampling reviews will be conducted following each sampling event in order to ensure all information is complete. Reviews will be conducted by the Field Sampler due to the small size of the staff. They will include evaluation of sampling activities and field documentation and will take place in the office, not in the field. Findings will be passed on to the Team Lead and the Project QA Manager to be incorporated into the next field event.

3.1.4 Laboratory Data Reviews

The Team Lead will be responsible for reviewing the laboratory's data for completeness and accuracy. The data will also be checked to determine that all specified methods were used and all related QC data was provided with the sample analytical results. These reviews will take place immediately upon receipt of data reports from the laboratory. This will ensure that any method deviations are corrected or explained, and any missing or incomplete data are provided. The Project QA Manager has the authority to request re-testing of laboratory data if it is invalid or would otherwise compromise the quality of the resulting project conclusions.

3.2 REPORTS

The Project QA Manager will be responsible for the technical memorandum (EPA R9# 03-238 Task 3.3) which will be provided in March 2008 to US EPA. The technical memorandum (EPA R9# 03-238 Task 3.3) will include result tables for chloride, nitrate, and specific conductivity, and maps of chloride, nitrate, and specific conductivity gradients. The technical memorandum will include a summary of any significant QA/QC issues and how they were resolved. It is currently understood that this project is of short enough duration that only a final technical memorandum to the EPA is necessary.

4.0 DATA VALIDATION AND USABILITY

4.1 DATA VERIFICATION AND VALIDATION

Data review is the in-house examination to ensure that the data have been recorded, transmitted, and processed correctly. The Team Lead is responsible for the data review. This examination will check for data entry errors, calculation errors, and data omission errors. If possible these errors will be corrected.

4.1.1 Field Data

Field data include logbooks, photographs, and COCs. The Field Sampler is responsible for reviewing the field data at the end of the sampling event. This includes determining that all information is complete and any deviations from the sampling methodologies are documented using the Field Activities Review Checklist (Appendix C).

4.1.2 Laboratory Data

Initial evaluation of the laboratory data are carried out by the CCL in agreement with protocols listed in their SOPs and QA manual. The Team Lead will also conduct an independent review of the data and QC parameters as described in sections 3.1.4 and using the Laboratory Data Review Checklist as detailed in section 1.9.4.4 and Appendix C.

- 28 -

4.2 RECONCILIATION WITH USER REQUIREMENTS

The purpose of the continued ambient monitoring of the Salinas Valley Basin Ground Water is to assess the water quality to manage and protect ground water resources. For data to be useful in developing the overreaching Salinas Valley Integrated Water Management Plan, it must first meet the requirement of this QA project Plan. The Project QA Manager will be responsible for making the final evaluation of the data's usability in meeting the Project objectives. All data passing this final evaluation will then be used to establish a cohesive and succinct Water Quality Management Plan in accordance to the work begun under EPA-I and continued under EPA-II. Additionally, the Agency will integrate these ground water quality data with previously collected data for use in trend analysis.

- 29 -

5.0 REFERENCES

Department of Public Works, Division of Water Resources (DWR). 1946. Bulletin 52: Salinas Basin Investigation.

Durbin, TJ, GW Kapple, JR Freckleton. 1978. Two-Dimensional and Three-Dimensional Digital Flow Models of the Salinas Valley Ground-Water Basin, California. US Geological Survey. Water Resources Investigations Report 78-113. Prepared in cooperation with the US Army Corps of Engineers.

Geomatrix Consultants. 2001. Evaluation of the Salinas Valley Groundwater Monitoring Network and Proposed Redesign. Prepared for The Monterey County Water Resources Agency.

Greene, HG. 1970. Geology of Southern Monterey Bay and its Relationship to the Ground-Water Basin and Seawater Intrusion. US Geological Survey Open File Report.

Hunt, JW, BS Anderson, BM Phillips, PA Nicely, RS Tjeerdema, HM Puckett, M Stephenson, K Worcester, V deVlaming. 2003. Ambient toxicity due to chlorpyrifos and diazinon in a Central California Watershed. Environ. Monit. Assess. 82: 83-112.

Monterey County Agricultural Commissioner's Office (Ag Commission). 2006. Monterey County Crop Report.

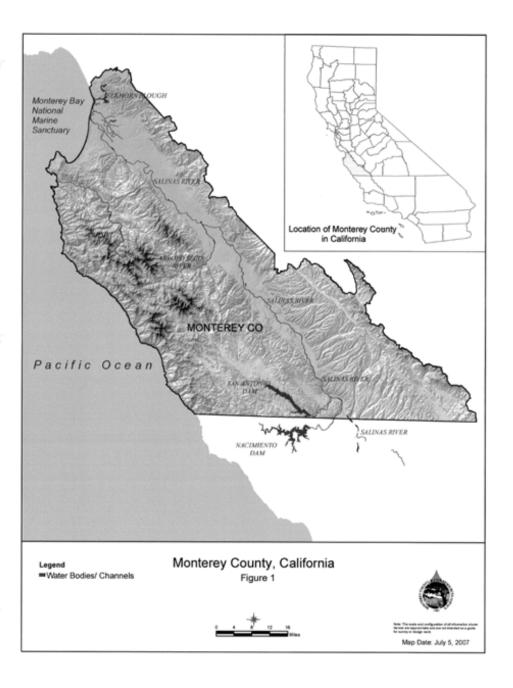
Monterey County. 2007. Fact Finder. Prepared by Monterey County Administrative Office.

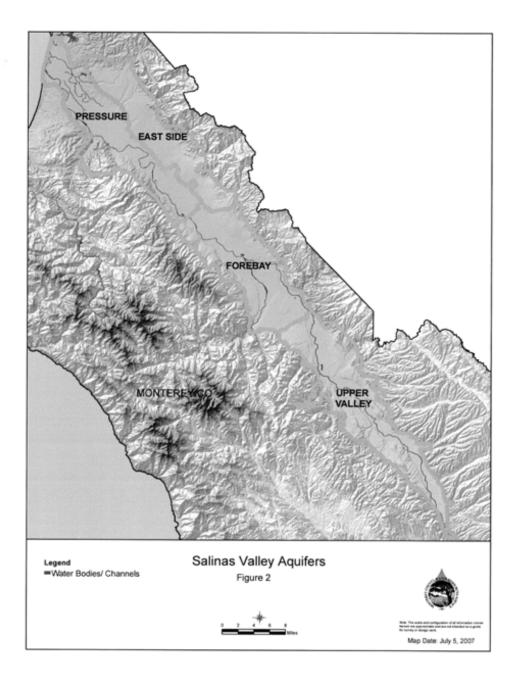
Monterey County Water Resources Agency (MCWRA). 1997. Water Resources Data Report, Water Year 1994-1995.

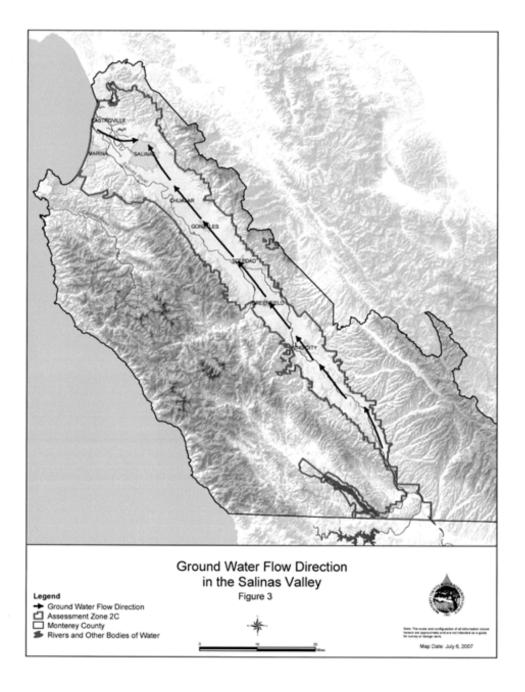
Quality Assurance Project Plan for Monitoring of Surface Water Eagle Valley Reservation. 2005. Prepared by Eagle Valley Environmental Program Eagle Valley Band of Indians Eagle Valley Reservation. Prepared for US EPA Region 9.

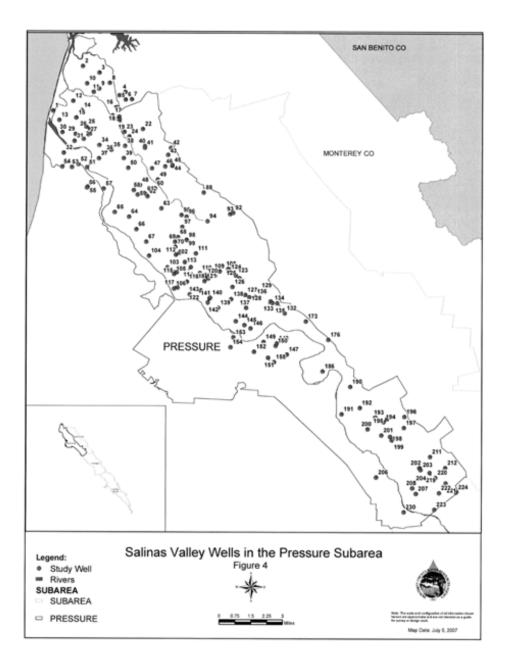
Salinas Valley Ground Water Basin Hydrology Conference (White Paper). 1995. Hydrogeology and Water Supply of Salinas Valley. Prepared for The Monterey County Water Resources Agency.

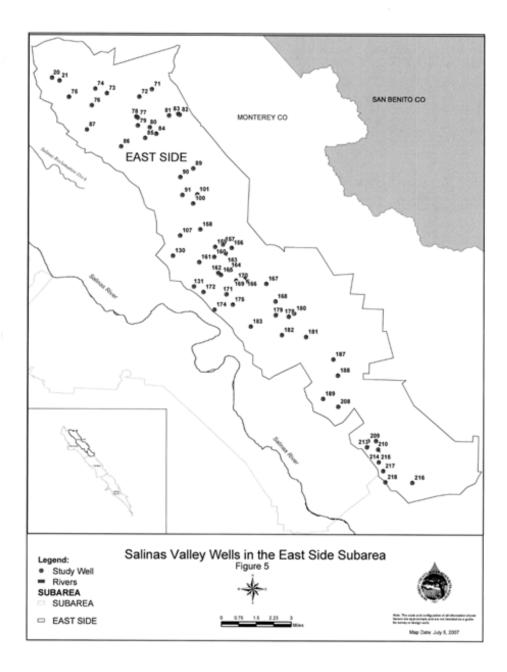
State of California, Department of Water Resources (DWR). 2003. Bulletin 118 Update: California's Groundwater.

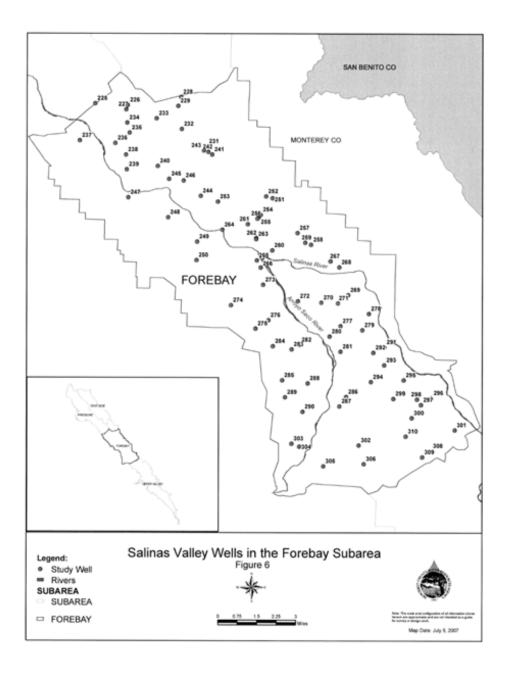

Sycamore Creek Quality Assurance Management Plan. 2006. Prepared by Instant Reference Sources, Inc. Prepared for California State Water Resources Control Board.

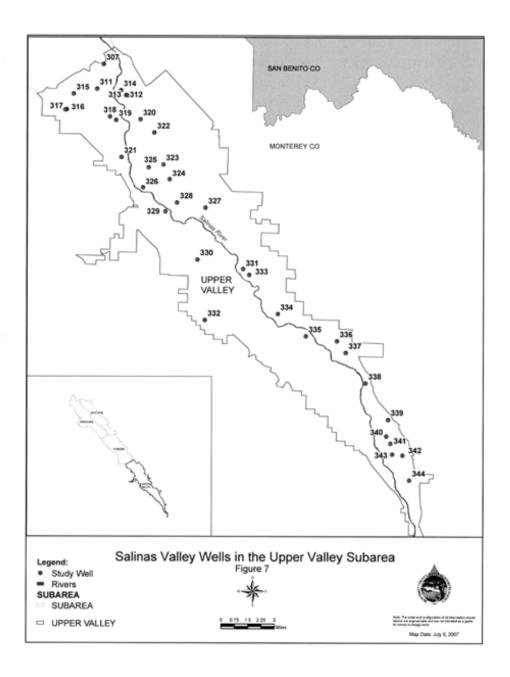

US EPA. 2002. Guidance for Quality Assurance Project Plans.

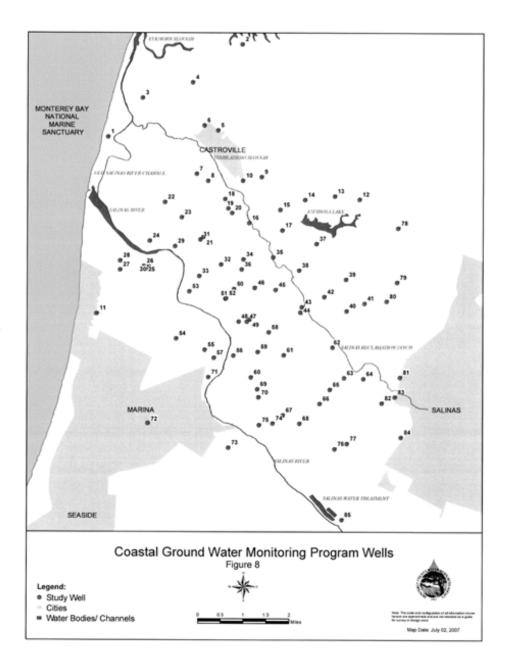

US EPA Grant R9# 03-238. 2003. Salinas Valley Integrated Water Management Plan. Prepared by The Monterey County Water Resources Agency. Prepared for US EPA Region 9. Grants Management Office.


- 30 -


FIGURES







TABLES

Table 1 COMPLETE MINERAL PANEL ANALYTES

ANALYTE	METHOD	LABORATORY MDL**	LABORATORY PQL	LOWEST CALIB. STD.	PAL
Calcium (Ca)	SM 3111 B ¹	0.02 mg/L	1.0 mg/L	1.0 mg/L	1.0 mg/L
CATION ANION BALANCE	Calculated				
*Chloride (Cl)	EPA 300.0 ²	0.01 mg/L	1.0 mg/L	0.1 mg/L	1.0 mg/L
*Conductivity (SEC)	SM 2510 B	1 umho/cm @ 25 C	1 umho/cm @ 25 C	N/A	1 umho/cm @ 25 C
Magnesium (Mg)	SM 3111 B	0.005 mg/L ¹	1.0 mg/L	0.1 mg/L	1.0 mg/L
*Nitrate (NO3)	EPA 300.0	0.002 mg/L ²	1.0 mg/L	0.1 mg/L	1.0 mg/L
pH (Laboratory)	SM 4500-H B	pH Units (2 sig figs)	pH Units (2 sig figs)	N/A	pH Units (2 sig figs)
Potassium (K)	SM 3111 B	0.025 mg/L1	0.1 mg/L	0.1 mg/L	0.1 mg/L
Sodium (Na)	SM 3111 B	0.03 mg/L ¹	1.0 mg/L	0.1 mg/L	1.0 mg/L
Sulfate (SO4)	EPA 300.0	0.03 mg/L ²	1.0 mg/L	0.1 mg/L	1.0 mg/L
Total Alkalinity (as CaCO3)	SM 2320 B	1.0 mg/L	1.0 mg/L	N/A	1.0 mg/L

¹ = MDL study completed February 2007

² = MDL study completed May 2007 * = Partial Mineral Panel analytes

** = These are the laboratory's latest MDLs and supersede the MDLs listed in Appendix D-1. MDL = method detection limit; PQL = practical quantitative limit; PAL = project action level All laboratory results are bracketed by calibration standards. No "estimated" results (below the lowest calib std and above the MDL) are given to the Agency.

Table 2 QUALITY CONTROL REQUIREMENTS FOR LABORATORY ANALYSES

QA	QA PARAMETER FREQUENCY CRITERION		CORRECTIVE	
PROCEDURE				ACTION
Field Blank	Field Contamination	1/20 field samples; 5% frequency	<mdl< td=""><td>Recollect sampling event or flag data if unable recollect</td></mdl<>	Recollect sampling event or flag data if unable recollect
Field Duplicate	Field Precision	1/10 field samples for first two events; if criterion is met, then 1/20 field samples	RPD < 25%	Recollect sampling event or flag data if unable recollect
Method Blank	Analytical Contamination	3 per analytical batch	< RL	Reanalyze analytical batch
LCS (CRM)	Accuracy	1 per analytical batch	80-120% REC	Reanalyze analytical batch
Analytical Duplicate	Analytical Precision	1 per analytical batch	RPD < 25%	Reanalyze analytical batch
Matrix Spike	Matrix Interference and Accuracy	1 per analytical batch; at 3-10x the native conc.	75-125% REC	Reanalyze analytical batch
Matrix Spike Duplicate	Precision and Accuracy	1 per analytical batch; at 3-10x the native conc.	RPD <25%	Reanalyze analytical batch
Continuing Calibration	Analytical Control	1 per 10 sample runs	80-120% of initial slope	Reanalyze analytical batch
Assess percent of data successfully collected	Data Completeness	N/A	90%	N/A

MDL=Method Detection Limit; RPD=Relative Percent Difference; RL=Report Limit;

REC=Recovery; LCS=Laboratory Control Sample; CRM=Certified Reference Material

An analytical batch is defined as 20 or fewer samples.

Table 3 LABORATORY DATA QUAILITY OBJECTIVES (DQOs)

ANALYTE	METHOD BLANK	LCS (CRM)	ANALYTICAL DUPLICATE	MATRIX SPIKE	MATRIX SPIKE DUPLICATE	CONTINUING CALIBRATION
Calcium (Ca)	yes	yes	yes	yes	yes	yes
Chloride (Cl)	yes	yes	yes	yes	yes	yes
Conductivity (SEC)	yes	yes	yes	no	no	yes
Magnesium (Mg)	yes	yes	yes	yes	yes	yes
Nitrate (NO3)	yes	yes	yes	yes	yes	yes
pH (Laboratory)	no	yes	yes	no	no	yes
Potassium (K)	yes	yes	yes	yes	yes	yes
Sodium (Na)	yes	yes	yes	yes	yes	yes
Sulfate (SO4)	yes	yes	yes	yes	yes	yes
Total Alkalinity (as CaCO3)	yes	yes	yes	no	no	yes

Table 4 SALINAS VALLEY WELLS AND LOCATIONS

STATE WELL NUMBER	AQUIFER	MAP ID	FALSE EASTING ¹	FALSE NORTHING ¹
13S/01E-36J01	PRESSURE 900	1	5741483.0	2170847.00002
13S/02E-20M02	PRESSURE 400	2	5748878.5	2182094.25003
13S/02E-21N01	PRESSURE 400	3	5753018.5	2180456.75002
13S/02E-27L01	PRESSURE 180	4	5759500.0	2175572.50002
13S/02E-27M01	PRESSURE 400	5	5758010.0	2174784.50002
13S/02E-27P01	PRESSURE 400	6	5759593.5	2173660.50002
13S/02E-27Q02	PRESSURE 400	7	5761129.5	2173768.75002
13S/02E-28B01	PRESSURE 400	8	5755624.0	2177900.75002
13S/02E-28E01	PRESSURE 400	9	5752984.0	2176434.75002
13S/02E-29F02	PRESSURE 400	10	5749961.0	2177732.25002
13S/02E-29J01	PRESSURE 400	11	5751657.5	2175604.25002
13S/02E-31A02	PRESSURE 900	12	5746516.5	2173308.00002
13S/02E-31N02	PRESSURE 400	13	5743060.5	2168496.25002
13S/02E-32M02	PRESSURE 900	14	5748673.0	2170965.00002
13S/02E-32N01	PRESSURE 400	15	5747285.0	2169132.75003
13S/02E-33H03	PRESSURE 180	16	5757325.5	2171726.00002
13S/02E-33R01	PRESSURE 180	17	5756359.5	2169699.75003
13S/02E-34M02	PRESSURE 180	18	5757952.0	2169365.25003
13S/02E-34N01	PRESSURE 180	19	5758043.5	2168657.25003
13S/02E-36J01	EAST SIDE BOTH	20	5772057.0	2168257.00002
14S/02E-01A01	EAST SIDE	21	5773736.0	2167596.00002
14S/02E-02E02	PRESSURE 400	22	5763989.0	2166284.00003
14S/02E-03F02	PRESSURE 180	23	5759284.0	2165549.00003
14S/02E-03K02	PRESSURE 400	24	5760546.0	2164390.00002
14S/02E-05F04	PRESSURE 400	25	5749784.5	2166850.50002
14S/02E-05G03	PRESSURE 400	26	5750701.5	2166258.50002
14S/02E-05K01	PRESSURE 400	27	5750303.5	2164892.00002
14S/02E-05P02	PRESSURE 400	28	5749120.0	2163754.25002
14S/02E-06J03	PRESSURE 400	29	5747119.5	2164986.75002
14S/02E-06L01	PRESSURE 900	30	5743826.5	2165438.75002
14S/02E-06R02	PRESSURE 400	31	5746852.5	2163229.50003
14S/02E-07K01	PRESSURE 400	32	5744199.0	2160286.75002
14S/02E-08A01	PRESSURE 400	33	5751818.0	2162226.75002
14S/02E-09D03	PRESSURE 400	34	5753098.5	2162246.50002
14S/02E-09H03	PRESSURE 400	35	5756070.0	2161048.75002

EALOE	EALOE
	2 August, 2007
	X-97994701-0
	EPA R9#03-238
Monterey County W	/ater Resources Agency

STATE WELL NUMBER	AQUIFER	MAP ID	FALSE EASTING ¹	FALSE NORTHING ¹
14S/02E-09L02	PRESSURE 400	36	5754291.5	2160250.25002
14S/02E-09N01	PRESSURE 400	37	5752950.5	2158867.00003
14S/02E-10C01	PRESSURE 400	38	5759437.0	2162015.75002
14S/02E-10P02	PRESSURE 400	39	5759125.0	2158942.75002
14S/02E-11C01	PRESSURE 180	40	5764471.5	2161959.50002
14S/02E-11D01	PRESSURE 180	41	5764508.5	2161568.25002
14S/02E-12B01	PRESSURE 400	42	5771184.5	2161614.00002
14S/02E-12L02	PRESSURE 400	43	5770434.5	2159815.50002
14S/02E-12Q01	PRESSURE 400	44	5771537.0	2157088.75002
14S/02E-13B02	PRESSURE 180	45	5771526.0	2157219.75003
14S/02E-13D01	PRESSURE 180	46	5769699.5	2156883.75002
14S/02E-14B01	PRESSURE 180	47	5766275.0	2156434.00002
14S/02E-14N03	PRESSURE 400	48	5763230.0	2152205.50003
14S/02E-14R01	PRESSURE 180	49	5767842.5	2153580.50002
14S/02E-15B01	PRESSURE 400	50	5760275.5	2156533.25002
14S/02E-17B02	PRESSURE 400	51	5749990.5	2156598.25002
14S/02E-17C01	PRESSURE 180	52	5747844.0	2157381.75003
14S/02E-18A01	PRESSURE 400	53	5746233.0	2156686.25002
14S/02E-18C01	PRESSURE 400	54	5743827.5	2156787.25002
14S/02E-20B01	PRESSURE 180	55	5750165.5	2151711.75003
14S/02E-20B02	PRESSURE 180	56	5750001.0	2151554.75003
14S/02E-21F02	PRESSURE 180	57	5754169.5	2151251.50002
14S/02E-22H01	PRESSURE 400	58	5761690.5	2150902.75002
14S/02E-22H02	PRESSURE 180	59	5762674.0	2149777.00002
14S/02E-23A01	PRESSURE 180	60	5767130.0	2151399.50002
14S/02E-23F01	PRESSURE 180	61	5764570.5	2149971.00002
14S/02E-23L03	PRESSURE 400	62	5765164.5	2149382.00002
14S/02E-25D03	PRESSURE 400	63	5768753.5	2146325.50002
14S/02E-27K01	PRESSURE 180	64	5760536.0	2144212.25002
14S/02E-28H02	PRESSURE 180	65	5756940.5	2145354.75002
14S/02E-34A03	PRESSURE 400	66	5762394.5	2141097.75002
14S/02E-35L02	PRESSURE 400	67	5764879.0	2137944.25002
14S/02E-36H01	PRESSURE 180	68	5773015.5	2139158.50003
14S/02E-36J02	PRESSURE 400	69	5772268.5	2137939.00002
14S/02E-36R02	PRESSURE 400	70	5772326.5	2136698.50002
14S/03E-02E03	EAST SIDE BOTH	71	5794727.5	2165742.50002
			5791884.0	

Monterey County Water Resources Agency EPA R9#03-238 X-97994701-0
2 August, 2007

CTATE WELL NUMBER	40111550	-	FALSE	FALSE
STATE WELL NUMBER	AQUIFER	MAP ID	EASTING ¹	NORTHING ¹
14S/03E-04E01	EAST SIDE BOTH	73	5784479.5	2164809.75002
14S/03E-05B02	EAST SIDE BOTH	74	5781839.5	2165837.25002
14S/03E-06L01	EAST SIDE SHALLOW	75	5775895.0	2163924.50003
14S/03E-08C01	EAST SIDE BOTH	76	5781050.5	2162072.25002
14S/03E-10F02	EAST SIDE	77	5791569.0	2159330.50002
14S/03E-10F03	EAST SIDE BOTH	78	5791236.5	2159578.00002
14S/03E-10P01	EAST SIDE	79	5791544.0	2157558.25002
14S/03E-10R02	EAST SIDE BOTH	80	5794251.5	2157151.00002
14S/03E-11H01	EAST SIDE SHALLOW	81	5798504.0	2159823.00002
14S/03E-12E01	EAST SIDE SHALLOW	82	5800865.5	2160009.25003
14S/03E-12E02	EAST SIDE	83	5800608.5	2160173.25003
14S/03E-14D01	EAST SIDE SHALLOW	84	5795697.5	2155748.25003
14S/03E-15H03	EAST SIDE BOTH	85	5793222.5	2154777.00002
14S/03E-16K03	EAST SIDE	86	5787748.0	2152845.50003
14S/03E-17D01	EAST SIDE	87	5779979.0	2156594.00002
14S/03E-20D01	PRESSURE 400	88	5779540.0	2150357.75002
14S/03E-24H01	EAST SIDE SHALLOW	89	5803951.0	2147934.50002
14S/03E-24N01	EAST SIDE	90	5801060.0	2146002.50002
14S/03E-25L02	EAST SIDE BOTH	91	5801508.5	2141975.75002
14S/03E-28B02	PRESSURE 400	92	5786919.0	2145249.50002
14S/03E-28F02	PRESSURE 400	93	5786200.6	2144963.98574
14S/03E-29L04	PRESSURE 180	94	5780547.4	2143125.21920
14S/03E-30E01	PRESSURE 180	95	5773899.5	2144670.25003
14S/03E-30F02	PRESSURE 180	96	5775180.5	2144268.50002
14S/03E-30N01	PRESSURE 180	97	5774083.5	2141696.50002
14S/03E-31F01	PRESSURE 180	98	5775271.5	2138346.50003
14S/03E-31F02	PRESSURE 400	99	5775228.5	2138492.00002
14S/03E-36A01	EAST SIDE SHALLOW	100	5803921.0	2140085.50002
14S/04E-30N01	EAST SIDE BOTH	101	5804847.5	2142132.00001
15S/02E-01A03	PRESSURE 400	102	5772482.0	2134724.00002
15S/02E-01K01	PRESSURE 180	103	5770291.5	2131514.75002
15S/02E-02G01	PRESSURE 400	104	5765615.0	2134401.50002
15S/02E-12A01	PRESSURE 400	105	5772051.5	2129878.50002
15S/02E-12R01	PRESSURE 400	106	5772057.5	2126203.25003
15S/03E-01L01	EAST SIDE	107	5801038.5	2132896.75002
15S/03E-04K03	PRESSURE 400	108	5785732.5	2131172.00002
15S/03E-04N03	PRESSURE 400	109	5783621.0	2130577.75002

EAL OF		AL OF
		2 August, 2007
		X-97994701-0
		EPA R9#03-238
Monterey County	Water	Resources Agency

STATE WELL NUMBER	AQUIFER	MAP ID	FALSE EASTING ¹	FALSE NORTHING ¹
15S/03E-05N01	PRESSURE 180	110	5778619.0	2130164.00003
15S/03E-06A03	PRESSURE 180	111	5777613.0	2135010.00002
15S/03E-06D02	PRESSURE 400	112	5773392.0	2135175.75002
15S/03E-06F02	PRESSURE 400	113	5774781.5	2132857.75002
15S/03E-06K01	PRESSURE 400	114	5776302.5	2131605.50002
15S/03E-07D02	PRESSURE 400	115	5772729.0	2130304.25002
15S/03E-07G01	PRESSURE 400	116	5775356.0	2127909.75002
15S/03E-07N01	PRESSURE 180	117	5772911.5	2126430.50002
15S/03E-08B04	PRESSURE 400	118	5780790.5	2128738.25002
15S/03E-08C06	PRESSURE 180	119	5780025.5	2129640.75003
15S/03E-08C07	PRESSURE 400	120	5780124.5	2129385.50002
15S/03E-08F07	PRESSURE 400	121	5779786.0	2128096.50002
15S/03E-08N03	PRESSURE 400	122	5778859.5	2125760.50002
15S/03E-09B01	PRESSURE 180	123	5787613.5	2129526.50003
15S/03E-09C01	PRESSURE 180	124	5785912.0	2130387.75002
15S/03E-09H02	PRESSURE 180	125	5788543.5	2128841.50003
15S/03E-09K04	PRESSURE 400	126	5786815.0	2126625.50003
15S/03E-10P01	PRESSURE 180	127	5789973.0	2124641.25002
15S/03E-10P03	PRESSURE 180	128	5790992.5	2124075.25002
15S/03E-10R02	PRESSURE 180	129	5793537.5	2125764.25002
15S/03E-12E02	EAST SIDE BOTH	130	5799472.0	2128349.25000
15S/03E-13J02	EAST SIDE	131	5804170.5	2121482.50002
15S/03E-13N01	PRESSURE 180	132	5799834.5	2120075.00003
15S/03E-14C01	PRESSURE 180	133	5796323.5	2123063.75002
15S/03E-14G01	PRESSURE 180	134	5796738.0	2122656.50003
15S/03E-14H01	PRESSURE 180	135	5797941.0	2122606.00002
15S/03E-15B01	PRESSURE 400	136	5792336.0	2124219.00002
15S/03E-15L02	PRESSURE 180	137	5790177.0	2121393.00002
15S/03E-16B03	PRESSURE 400	138	5786481.0	2123545.50002
15S/03E-16M01	PRESSURE 180	139	5783233.5	2121388.25002
15S/03E-17B01	PRESSURE 180	140	5781259.5	2123911.75003
15S/03E-17B02	PRESSURE 180	141	5781099.5	2123757.50002
15S/03E-17G01	PRESSURE 180	142	5780630.0	2122750.25002
15S/03E-18B01	PRESSURE 180	143	5776074.5	2124737.50002
15S/03E-21A01	PRESSURE 180	144	5787617.0	2118056.00002
15S/03E-22F02	PRESSURE 180	145	5789756.5	2117099.00002
15S/03E-22G01	PRESSURE 180	146	5791343.0	2116241.25002

Monterey County Water Resources Agency EPA R9#03-238 X-97994701-0
2 August, 2007

STATE WELL NUMBER	AQUIEED	-	FALSE	FALSE
STATE WELL NUMBER	AQUIFER	MAP ID	EASTING ¹	NORTHING ¹
15S/03E-25L01	PRESSURE 180	147	5800408.5	2109728.50003
15S/03E-26A01	PRESSURE 400	148	5797857.5	2112518.00002
15S/03E-26D01	PRESSURE 180	149	5794548.5	2112893.75003
15S/03E-26H02	PRESSURE 180	150	5797573.5	2111904.75002
15S/03E-26P01	PRESSURE 400	151	5795686.5	2108925.25002
15S/03E-27J01	PRESSURE 400	152	5792207.5	2110413.00002
15S/03E-28B02	PRESSURE 400	153	5787075.5	2113993.25002
15S/03E-28G01	PRESSURE 180	154	5786358.0	2111546.50003
15S/03E-35B05	PRESSURE 180	155	5797153.0	2107813.50003
15S/04E-05K01	EAST SIDE	156	5812585.0	2130171.00001
15S/04E-05M01	EAST SIDE BOTH	157	5810608.5	2130920.50001
15S/04E-06D04	EAST SIDE BOTH	158	5805535.0	2134296.75001
15S/04E-06R01	EAST SIDE BOTH	159	5808832.0	2130397.50001
15S/04E-07A01	EAST SIDE BOTH	160	5808667.0	2128112.25001
15S/04E-07E02	EAST SIDE	161	5805290.0	2126918.25001
15S/04E-07R01	EAST SIDE SHALLOW	162	5809617.5	2124497.75001
15S/04E-08C01	EAST SIDE SHALLOW	163	5811226.0	2128961.75001
15S/04E-08L01	EAST SIDE BOTH	164	5812038.0	2125163.50001
15S/04E-08N01	EAST SIDE BOTH	165	5810237.5	2124086.00001
15S/04E-09N01	EAST SIDE	166	5815679.0	2123673.25001
15S/04E-15D02	EAST SIDE SHALLOW	167	5820525.5	2122131.50001
15S/04E-15P02	EAST SIDE BOTH	168	5822591.0	2118164.75001
15S/04E-16D01	EAST SIDE BOTH	169	5816370.5	2122604.00001
15S/04E-17B01	EAST SIDE	170	5813674.5	2122802.00001
15S/04E-17P02	EAST SIDE SHALLOW	171	5811444.0	2119748.75001
15S/04E-18L01	EAST SIDE	172	5806258.0	2120249.25001
15S/04E-19D02	PRESSURE 400	173	5805231.0	2118084.25001
15S/04E-19H03	EAST SIDE	174	5808765.0	2116311.75003
15S/04E-20B02	EAST SIDE SHALLOW	175	5812893.0	2117437.00001
15S/04E-20N01	PRESSURE 400	176	5810999.0	2113437.25001
15S/04E-20Q01	EAST SIDE	177	5813019.5	2113916.75003
15S/04E-22J01	EAST SIDE	178	5825620.5	2114797.50001
15S/04E-22L02	EAST SIDE BOTH	179	5822626.0	2115130.25001
15S/04E-23M01	EAST SIDE	180	5826800.0	2115510.00001
15S/04E-26G01	EAST SIDE	181	5829452.0	2110273.75001
15S/04E-27G01	EAST SIDE BOTH	182	5824082.0	2110658.00001
15S/04E-28C01	EAST SIDE	183	5817013.0	2112539.50001

Monterey County Wate	EPA R9#03-238
	X-97994701-0
	2 August, 2007

STATE WELL NUMBER AQUIFER MAP ID EASTING1 NORTHING1 15S/04E-29K03 EAST SIDE 184* • • 15S/04E-29K03 EAST SIDE 185* • • 15S/04E-29K03 EAST SIDE 185* • • 15S/04E-32E01 PRESSURE 180 186 5809573.0 2105524.75003 15S/04E-36H01 EAST SIDE BOTH 187 5835591.5 2105235.00001 15S/04E-36H01 EAST SIDE 199 5813563.5 2101652.75001 16S/04E-04C01 PRESSURE 400 190 5816563.5 2094772.87501 16S/04E-08J01 PRESSURE 180 191 5814399.5 2094772.87501 16S/04E-10R02 PRESSURE 400 196 5822871.5 209393.87501 16S/04E-11E02 PRESSURE 400 196 582367.0 2092808.00001 16S/04E-14M01 PRESSURE 400 196 5820977.5 2091400.75001 16S/04E-14M02 PRESSURE 400 198 582657.0 2089158.00001 16S/04E-24R01 <t< th=""><th colspan="2"></th><th></th><th>FALSE</th><th>FALSE</th></t<>				FALSE	FALSE
158/04E-29K03 EAST SIDE 185* • 158/04E-32E01 PRESSURE 180 186 5809573.0 2105524.75003 158/04E-36R02 EAST SIDE BOTH 187 583591.5 2105235.00001 158/04E-01L02 EAST SIDE BOTH 188 580592.5 2101652.75001 168/04E-04C01 PRESSURE 400 190 5816563.5 2101653.00001 168/04E-04C01 PRESSURE 180 191 5814399.5 2094772.87501 168/04E-04C01 PRESSURE 180 192 5818962.5 2093933.87501 168/04E-10R02 PRESSURE 400 193 5822871.5 2093933.87501 168/04E-11E02 PRESSURE 400 194 5824891.5 2092808.0001 168/04E-12M01 PRESSURE 400 196 5830110.0 2094179.62501 168/04E-14M01 PRESSURE 400 197 5829977.5 2091400.75001 168/04E-14M02 PRESSURE 400 198 5826934.0 208814.12501 168/04E-15D01 PRESSURE 400 201 5824314.0 2099470.00003 <	STATE WELL NUMBER	AQUIFER	MAPID	EASTING ¹	NORTHING ¹
ISSIOE-23003 Description ISSIOE ISS ISSIOE PRESSURE 180 186 5809573.0 2105524 75003 ISSIOE EAST SIDE BOTH 187 5835591.5 2105524 75003 ISSIOE EAST SIDE BOTH 188 5835692.5 2101652 75001 ISSIOE-04C01 PRESSURE 400 190 5816563.5 2096387 72803 ISSIOE-04C01 PRESSURE 180 191 5814399.5 2094772 87501 ISSIOE-10K01 PRESSURE 400 193 5822871.5 209333 87501 ISSIOE-13D01 PRESSURE 400 194 5824891.5 2092080 80001 ISSIOE-13D01 PRESSURE 400 195 5825734.0 2093187 .12501 ISSIOE-13D01 PRESSURE 400 196 5830110.0 2094179 .62501 ISSIOE-13D01 PRESSURE 400 197 5829977.5 2091400 .75001 ISSIOE-13D01 PRESSURE 400 198 5826507.0 2089450 .00001 ISSIOE-13D01 PRESSURE 400 201 582491.0 2089470 .00001	15S/04E-28C01	EAST SIDE	184*	•	•
158/04E-36H01 EAST SIDE BOTH 187 5835591.5 2105235.00001 155/04E-36R02 EAST SIDE BOTH 188 5836592.5 2101652.75001 165/04E-04L02 EAST SIDE 189 5833261.5 2096387.25003 165/04E-04C01 PRESSURE 400 190 5816563.5 200477.2.87501 168/04E-04C01 PRESSURE 180 191 5814399.5 209477.2.87501 168/04E-10K01 PRESSURE 400 193 5822871.5 209333.87501 168/04E-10R02 PRESSURE 400 194 5824891.5 2092080.00001 168/04E-11E02 PRESSURE 400 196 5830110.0 2094179.62501 168/04E-13D01 PRESSURE 400 196 582097.5 2091400.75001 168/04E-14M01 PRESSURE 400 199 582697.0 2089470.00001 168/04E-14M02 PRESSURE 400 201 582491.5 2091400.75001 168/04E-14M01 PRESSURE 400 201 582491.0 2089470.00001 168/04E-24R01 PRESSURE 400 202 583326.5 208130.00	15S/04E-29K03	EAST SIDE	185*	•	•
158/04E-36R02 EAST SIDE BOTH 188 5836592.5 2101652.75001 16S/04E-04C01 PRESSURE 400 190 6816663.5 2096387.25003 16S/04E-04C01 PRESSURE 180 191 581399.5 2094772.87501 16S/04E-09A01 PRESSURE 180 192 5818962.5 2096385.75001 16S/04E-10K01 PRESSURE 400 193 5822871.5 2093933.87501 16S/04E-10R02 PRESSURE 400 194 5824891.5 2092808.00001 16S/04E-11E02 PRESSURE 400 195 5825734.0 2093587.12501 16S/04E-12M01 PRESSURE 400 196 6530110.0 2094179.62501 16S/04E-14M01 PRESSURE 400 197 5829977.5 2091400.75001 16S/04E-15D01 PRESSURE 400 198 5826970.0 2089158.00001 16S/04E-15H02 PRESSURE 400 201 582414.0 2089470.00001 16S/04E-25A01 PRESSURE 400 203 583415.0 2098054.00011 16S/04E-25A01 PRESSURE 180 204 5832057.0 207499.	15S/04E-32E01	PRESSURE 180	186	5809573.0	2105524.75003
16S/04E-01L02 EAST SIDE 189 5833261.5 2096387.25003 16S/04E-04C01 PRESSURE 400 190 5816563.5 2101653.00001 16S/04E-04C01 PRESSURE 180 191 5818962.5 2096385.75001 16S/04E-08J01 PRESSURE 180 192 5818962.5 2093933.87501 16S/04E-10R02 PRESSURE 400 193 5822871.5 2092808.00001 16S/04E-10R02 PRESSURE 400 195 5825734.0 2093837.12501 16S/04E-12M01 PRESSURE 400 196 5830110.0 2094179.62501 16S/04E-14M01 PRESSURE 400 197 5826977.5 2091400.75001 16S/04E-14M01 PRESSURE 400 198 5826977.0 2089188.0001 16S/04E-14M01 PRESSURE 400 208 5820915.5 2091029.00003 16S/04E-15D01 PRESSURE 400 201 5824314.0 2089470.00001 16S/04E-25A01 PRESSURE 400 203 5834115.0 2080854.0001 16S/04E-25K01 PRESSURE 400 205 5832125.5 2076199.750	15S/04E-36H01	EAST SIDE BOTH	187	5835591.5	2105235.00001
16S/04E-04C01 PRESSURE 400 190 5816563.5 2101653.00001 16S/04E-08J01 PRESSURE 180 191 5814399.5 2094772.87501 16S/04E-09A01 PRESSURE 400 193 5822871.5 2093933.87501 16S/04E-10R02 PRESSURE 400 194 5824891.5 2092808.00001 16S/04E-11202 PRESSURE 400 195 5825734.0 2093587.12501 16S/04E-12M01 PRESSURE 400 196 5830110.0 2094179.62501 16S/04E-13D01 PRESSURE 400 197 5829977.5 2091400.75001 16S/04E-14M01 PRESSURE 400 198 5826507.0 2089158.00001 16S/04E-14M02 PRESSURE 400 199 5826934.0 2088314.12501 16S/04E-15D01 PRESSURE 400 201 582414.0 208470.00003 16S/04E-25A01 PRESSURE 400 202 5833826.5 208130.00003 16S/04E-25K01 PRESSURE 180 204 5832503.0 2077482.12501 16S/04E-25C01 PRESSURE 180 205 5832125.5 2076199.7	15S/04E-36R02	EAST SIDE BOTH	188	5836592.5	2101652.75001
16S/04E-08J01PRESSURE 1801915814399.52094772.8750116S/04E-09A01PRESSURE 1801925818962.52096385.7500116S/04E-10K01PRESSURE 4001935822871.52093933.8750116S/04E-10R02PRESSURE 4001945824891.52092808.0000116S/04E-11E02PRESSURE 4001955825734.02093587.1250116S/04E-12M01PRESSURE 400196580110.02094179.6250116S/04E-13D01PRESSURE 4001975829977.52091400.7500116S/04E-14M02PRESSURE 400198582657.02088134.1250116S/04E-15D01PRESSURE 4001995826934.02088314.1250116S/04E-15H02PRESSURE 4002015824314.02089470.0000116S/04E-24R01PRESSURE 4002035834115.02080854.0000116S/04E-25A01PRESSURE 4002035832115.02097482.1250116S/04E-25K01PRESSURE 1802065832057.02077482.1250116S/04E-25Q01PRESSURE 1802065833029.5207481.8750116S/04E-27G01PRESSURE 1802075833648.02094674.0000316S/05E-17R01EAST SIDE BOTH208584584.0209474.000316S/05E-17R01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-17R01EAST SIDE214584561.0208574.250316S/05E-17R01EAST SIDE BOTH2155845834.0208574.250316S/05E-20R01EAST SIDE214584561.	16S/04E-01L02	EAST SIDE	189	5833261.5	2096387.25003
16S/04E-09A01PRESSURE 1801925818962.52096385.7500116S/04E-10K01PRESSURE 4001935822871.52093933.8750116S/04E-10R02PRESSURE 4001945824891.52092808.0000116S/04E-11E02PRESSURE 4001955825734.02093587.1250116S/04E-12M01PRESSURE 4001965830110.02094179.6250116S/04E-13D01PRESSURE 4001975829977.52091400.7500116S/04E-14M01PRESSURE 4001995826934.02089158.0000116S/04E-14M02PRESSURE 4001995826934.0208914.1250116S/04E-15D01PRESSURE 4002015824915.52091029.0000316S/04E-24R01PRESSURE 4002015824314.02089470.0000116S/04E-25A01PRESSURE 4002035834115.02080854.0000116S/04E-25Q01PRESSURE 4002055832125.52076199.7500116S/04E-25Q01PRESSURE 1802065823057.02078926.7500116S/04E-27G01PRESSURE 1802075833648.02094674.0000316S/05E-07G01EAST SIDE BOTH208584361.02086999.1250316S/05E-19F01PRESSURE 1802115845212.0208742.550316S/05E-19F01PRESSURE 180211584591.0208585.1250316S/05E-20F01EAST SIDE2145845691.0208558.1250316S/05E-20F01EAST SIDE2145845691.0208574.2500316S/05E-20F01EAST SIDE2145845691.0	16S/04E-04C01	PRESSURE 400	190	5816563.5	2101653.00001
16S/04E-10K01PRESSURE 4001935822871.52093933.8750116S/04E-10R02PRESSURE 4001945824891.52092808.0000116S/04E-11E02PRESSURE 4001955825734.02093587.1250116S/04E-12M01PRESSURE 4001965830110.02094179.6250116S/04E-13D01PRESSURE 4001975829977.52091400.7500116S/04E-14M01PRESSURE 4001995826507.02088158.0000116S/04E-15D01PRESSURE 4001995826934.02088314.1250116S/04E-15D01PRESSURE 1802005820915.52091029.0000316S/04E-15H02PRESSURE 400201583286.52081330.0000316S/04E-25A01PRESSURE 4002035834115.02080854.0000116S/04E-25K01PRESSURE 4002055832125.52076199.7500116S/04E-25K01PRESSURE 1802065823057.02078926.7500116S/04E-25G01PRESSURE 1802065823057.02078926.7500116S/04E-27G01PRESSURE 1802075833648.02094674.0000316S/05E-17P01EAST SIDE BOTH2085836648.02094674.0000316S/05E-17P01EAST SIDE MALLOW210584512.02087024.2500316S/05E-19F01PRESSURE 180211584687.0208585.1250316S/05E-20R01EAST SIDE2145845691.02085074.2500316S/05E-20R01EAST SIDE2145845691.02085074.2500316S/05E-20R01EAST SIDE214584586	16S/04E-08J01	PRESSURE 180	191	5814399.5	2094772.87501
16S/04E-10R02PRESSURE 4001945824891.52092808.0000116S/04E-11E02PRESSURE 4001955825734.02093587.1250116S/04E-12M01PRESSURE 4001965830110.02094179.6250116S/04E-13D01PRESSURE 4001975829977.52091400.7500116S/04E-14M01PRESSURE 4001985826507.02089158.0000116S/04E-14M02PRESSURE 4001995826934.02088314.1250116S/04E-15D01PRESSURE 1802005820915.52091029.0000316S/04E-15H02PRESSURE 4002015824314.02089470.0000116S/04E-25A01PRESSURE 4002025833826.52081330.0000316S/04E-25A01PRESSURE 1802045832503.02077482.1250116S/04E-25Q01PRESSURE 1802055832125.52076199.7500116S/04E-25Q01PRESSURE 1802065823057.02078926.7500116S/04E-27G01PRESSURE 1802075833029.52074811.8750116S/04E-36B01PRESSURE 1802075833029.52074811.8750116S/05E-17P01EAST SIDE BOTH208584648.02094674.0000316S/05E-19F01PRESSURE 18021158445212.02087024.2500316S/05E-19F01PRESSURE 18021158445212.02087024.2500316S/05E-20R01EAST SIDE213584415.02085585.1250316S/05E-20R01EAST SIDE2145845691.0208577.2500116S/05E-20R01EAST SIDE2145845691	16S/04E-09A01	PRESSURE 180	192	5818962.5	2096385.75001
16S/04E-11E02PRESSURE 4001955825734.02093587.1250116S/04E-12M01PRESSURE 4001965830110.02094179.6250116S/04E-13D01PRESSURE 4001975829977.52091400.7500116S/04E-14M01PRESSURE 4001985826507.02089158.0000116S/04E-14M02PRESSURE 4001995826934.02088314.1250116S/04E-15D01PRESSURE 4002015820915.52091029.0000316S/04E-15H02PRESSURE 4002015824314.02089470.0000116S/04E-24R01PRESSURE 4002035834115.02080854.0000116S/04E-25A01PRESSURE 4002035832125.52076199.7500116S/04E-25Q01PRESSURE 1802065823057.02078926.7500116S/04E-27G01PRESSURE 180207583302.9.52074811.8750116S/04E-36B01PRESSURE 180207583302.9.52074811.8750116S/05E-07G01EAST SIDE BOTH208584361.02086999.1250316S/05E-17P01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115843647.02081360.3750316S/05E-20C01EAST SIDE2135843125.0208559.51250316S/05E-20R01EAST SIDE2145845691.0208574.2500316S/05E-20R01EAST SIDE2165853466.82077678.0532016S/05E-20R01EAST SIDE2165853466.82077678.0532016S/05E-20R01EAST SIDE2165853466	16S/04E-10K01	PRESSURE 400	193	5822871.5	2093933.87501
16S/04E-12M01PRESSURE 4001965830110.02094179.6250116S/04E-13D01PRESSURE 4001975829977.52091400.7500116S/04E-14M01PRESSURE 4001985826507.02089158.0000116S/04E-14M02PRESSURE 4001995826934.02088314.1250116S/04E-15D01PRESSURE 1802005820915.52091029.0000316S/04E-15H02PRESSURE 4002015824314.02089470.0000116S/04E-24R01PRESSURE 4002035834115.02080854.0000116S/04E-25A01PRESSURE 4002035834115.02080854.0000116S/04E-25K01PRESSURE 1802045832503.02077482.1250116S/04E-25Q01PRESSURE 1802065823057.02078926.7500116S/04E-27G01PRESSURE 1802075833029.52074811.8750116S/04E-36B01PRESSURE 1802075833029.5207481.8750316S/05E-07G01EAST SIDE BOTH2095843361.02086999.1250316S/05E-17P01EAST SIDE BOTH209584361.02084158.3750316S/05E-19F01PRESSURE 1802115836477.02081186.3750316S/05E-19F01PRESSURE 180211584423.02085854.1250316S/05E-19F01PRESSURE 1802125844023.02085585.1250316S/05E-20C01EAST SIDE2135845691.02085074.2500316S/05E-20R01EAST SIDE2145845691.02085585.1250316S/05E-20R01EAST SIDE BOTH21558	16S/04E-10R02	PRESSURE 400	194	5824891.5	2092808.00001
16S/04E-13D01PRESSURE 4001975829977.52091400.7500116S/04E-14M01PRESSURE 4001985826507.02089158.0000116S/04E-14M02PRESSURE 4001995826934.02088314.1250116S/04E-15D01PRESSURE 1802005820915.52091029.0000316S/04E-15H02PRESSURE 4002015824314.02089470.0000116S/04E-24R01PRESSURE 4002025833826.52081330.0000316S/04E-25A01PRESSURE 4002035834115.02080854.0000116S/04E-25K01PRESSURE 1802045832503.02077482.1250116S/04E-25Q01PRESSURE 1802055832125.52076199.7500116S/04E-27G01PRESSURE 1802065823057.02078926.7500116S/04E-36B01PRESSURE 1802075833029.52074811.8750116S/05E-07G01EAST SIDE BOTH2085836648.02094674.0000316S/05E-17P01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115836477.02081360.3750316S/05E-20R01EAST SIDE2135843125.02085585.1250316S/05E-20R01EAST SIDE2145845691.02085074.2500316S/05E-20R01EAST SIDE BOTH2155845834.02082220.000316S/05E-20R01EAST SIDE BOTH2155845668.2077678.0532016S/05E-27G01EAST SIDE BOTH2165853466.82077678.0532016S/05E-28D01EAST SIDE BOTH216<	16S/04E-11E02	PRESSURE 400	195	5825734.0	2093587.12501
16S/04E-14M01PRESSURE 4001985826507.02089158.0000116S/04E-14M02PRESSURE 4001995826934.02088314.1250116S/04E-15D01PRESSURE 1802005820915.52091029.0000316S/04E-15H02PRESSURE 4002015824314.02089470.0000116S/04E-24R01PRESSURE 4002025833826.52081330.0000316S/04E-25A01PRESSURE 4002035834115.02080854.0000116S/04E-25K01PRESSURE 1802045832503.02077482.1250116S/04E-25Q01PRESSURE 1802055823057.02078926.7500116S/04E-27G01PRESSURE 1802075833029.52074811.8750116S/04E-36B01PRESSURE 1802075833029.52074811.8750116S/05E-07G01EAST SIDE BOTH208584364.02094674.0000316S/05E-17P01EAST SIDE BOTH2095843361.02086999.1250316S/05E-19F01PRESSURE 1802115845212.02087024.2500316S/05E-20C01EAST SIDE2135843125.0208558.1250316S/05E-20R01EAST SIDE2145845691.0208558.1250316S/05E-20R01EAST SIDE BOTH2155845834.0208220.0000316S/05E-20R01EAST SIDE2145845691.02085074.2500316S/05E-20R01EAST SIDE BOTH2155845834.02082220.0000316S/05E-28D01EAST SIDE BOTH2165853466.82077678.0532016S/05E-28D01EAST SIDE BOTH217	16S/04E-12M01	PRESSURE 400	196	5830110.0	2094179.62501
16S/04E-14M02PRESSURE 4001995826934.02088314.1250116S/04E-15D01PRESSURE 1802005820915.52091029.000316S/04E-15H02PRESSURE 4002015824314.02089470.000116S/04E-24R01PRESSURE 4002025833826.52081330.000316S/04E-25A01PRESSURE 4002035834115.02080854.0000116S/04E-25K01PRESSURE 1802045832503.02077482.1250116S/04E-25Q01PRESSURE 1802055832125.52076199.7500116S/04E-27G01PRESSURE 1802065823057.02078926.7500116S/04E-36B01PRESSURE 1802075833648.02094674.0000316S/05E-07G01EAST SIDE BOTH2085836648.02094674.0000316S/05E-17P01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115836477.0208138.3750316S/05E-20C01EAST SIDE2135843125.0208585.1250316S/05E-20R01EAST SIDE2135843125.0208574.2500316S/05E-20R01EAST SIDE2145845691.02082220.0000316S/05E-20R01EAST SIDE BOTH2155845834.02082220.0000316S/05E-20R01EAST SIDE2145845691.0208574.2500316S/05E-20R01EAST SIDE BOTH2155845834.02082220.0000316S/05E-20R01EAST SIDE BOTH2165853466.82077678.0532016S/05E-20R01EAST SIDE BOTH216585	16S/04E-13D01	PRESSURE 400	197	5829977.5	2091400.75001
16S/04E-15D01PRESSURE 1802005820915.52091029.0000316S/04E-15H02PRESSURE 4002015824314.02089470.000116S/04E-24R01PRESSURE 4002025833826.52081330.000316S/04E-25A01PRESSURE 4002035834115.02080854.000116S/04E-25K01PRESSURE 1802045832503.02077482.1250116S/04E-25Q01PRESSURE 4002055832125.52076199.7500116S/04E-27G01PRESSURE 1802065823057.02078926.7500116S/04E-36B01PRESSURE 1802075833029.52074811.8750116S/05E-07G01EAST SIDE BOTH208584648.02094674.0000316S/05E-17P01EAST SIDE BOTH2095843361.02086999.1250316S/05E-19F01PRESSURE 1802115845212.02087024.2500316S/05E-19R01PRESSURE 1802115836477.02081458.3750316S/05E-20C01EAST SIDE2135843125.0208595.1250316S/05E-20R01EAST SIDE2145845691.02085074.2500316S/05E-20R01EAST SIDE2165833466.82077678.0532016S/05E-27G01EAST SIDE BOTH2155845834.02082220.0000316S/05E-20R01EAST SIDE2165833466.82077678.0532016S/05E-28D01EAST SIDE BOTH2155845834.02082220.0000316S/05E-28D01EAST SIDE BOTH2165833466.82077678.0532016S/05E-28D01EAST SIDE BOTH2165833	16S/04E-14M01	PRESSURE 400	198	5826507.0	2089158.00001
16S/04E-15H02PRESSURE 4002015824314.02089470.000116S/04E-24R01PRESSURE 4002025833826.52081330.000316S/04E-25A01PRESSURE 4002035834115.02080854.000116S/04E-25K01PRESSURE 1802045832503.02077482.1250116S/04E-25Q01PRESSURE 4002055832125.52076199.7500116S/04E-27G01PRESSURE 1802065823057.02078926.7500116S/04E-36B01PRESSURE 1802075833029.52074811.8750116S/04E-36B01PRESSURE 1802075833648.02094674.0000316S/05E-07G01EAST SIDE BOTH2085843361.02086999.1250316S/05E-17P01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115836477.02081158.3750316S/05E-20C01EAST SIDE213584312.0208595.1250316S/05E-20R01EAST SIDE2145845691.02085074.2500316S/05E-20R01EAST SIDE BOTH215584584.02082220.0000316S/05E-20R01EAST SIDE2145845691.02082220.000316S/05E-20R01EAST SIDE BOTH2155845834.02082220.000316S/05E-20R01EAST SIDE BOTH2155845864.02082220.000316S/05E-20R01EAST SIDE BOTH2165833416.02082220.000316S/05E-20R01EAST SIDE BOTH2155845864.02082220.000316S/05E-28D01EAST SIDE BOTH216	16S/04E-14M02	PRESSURE 400	199	5826934.0	2088314.12501
16S/04E-24R01PRESSURE 4002025833826.52081330.000316S/04E-25A01PRESSURE 4002035834115.02080854.000116S/04E-25K01PRESSURE 1802045832503.02077482.1250116S/04E-25Q01PRESSURE 4002055832125.52076199.7500116S/04E-27G01PRESSURE 1802065823057.02078926.7500116S/04E-36B01PRESSURE 1802075833029.52074811.8750116S/04E-36B01PRESSURE 1802075833648.02094674.0000316S/05E-07G01EAST SIDE BOTH2085843361.02086999.1250316S/05E-17P01EAST SIDE BOTH2095843361.02086999.1250316S/05E-17R01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115836477.0208138.3750316S/05E-20C01EAST SIDE2135843125.0208595.1250316S/05E-20R01EAST SIDE2145845691.02082220.000316S/05E-20R01EAST SIDE BOTH215584584.02082220.000316S/05E-20R01EAST SIDE2165833466.82077678.0532016S/05E-20R01EAST SIDE BOTH2155845834.02082220.000316S/05E-20R01EAST SIDE BOTH2165833466.82077678.0532016S/05E-28D01EAST SIDE BOTH2165833466.82077678.0532016S/05E-28D01EAST SIDE BOTH2175846865.02080272.2500316S/05E-28D01EAST SIDE BOTH218 <td>16S/04E-15D01</td> <td>PRESSURE 180</td> <td>200</td> <td>5820915.5</td> <td>2091029.00003</td>	16S/04E-15D01	PRESSURE 180	200	5820915.5	2091029.00003
16S/04E-25A01 PRESSURE 400 203 5834115.0 2080854.00001 16S/04E-25K01 PRESSURE 180 204 5832503.0 2077482.12501 16S/04E-25Q01 PRESSURE 400 205 5832125.5 2076199.75001 16S/04E-27G01 PRESSURE 180 206 5823057.0 2078926.75001 16S/04E-36B01 PRESSURE 180 207 5833029.5 2074811.87501 16S/04E-36B01 PRESSURE 180 207 5833029.5 2074811.87501 16S/04E-36B01 PRESSURE 180 209 5843361.0 2086999.12503 16S/05E-07G01 EAST SIDE BOTH 209 5843361.0 2086999.12503 16S/05E-17P01 EAST SIDE SHALLOW 210 5845212.0 2087024.25003 16S/05E-19F01 PRESSURE 180 211 5836477.0 2084158.37503 16S/05E-19R01 PRESSURE 180 212 5840423.0 208595.12503 16S/05E-20C01 EAST SIDE 213 5843125.0 208574.25003 16S/05E-20R01 EAST SIDE 214 5845691.0 2085074	16S/04E-15H02	PRESSURE 400	201	5824314.0	2089470.00001
16S/04E-25K01PRESSURE 1802045832503.02077482.1250116S/04E-25Q01PRESSURE 4002055832125.52076199.7500116S/04E-27G01PRESSURE 1802065823057.02078926.7500116S/04E-36B01PRESSURE 1802075833029.52074811.8750116S/04E-36B01PRESSURE 180207583361.02086999.1250316S/05E-07G01EAST SIDE BOTH2095843361.02086999.1250316S/05E-17P01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115836477.02081360.3750316S/05E-19R01PRESSURE 1802125840423.02081360.3750316S/05E-20C01EAST SIDE2135843125.0208595.1250316S/05E-20R01EAST SIDE2145845691.0208220.0000316S/05E-20R01EAST SIDE2165833466.82077678.0532016S/05E-27G01EAST SIDE216583466.82077678.0532016S/05E-28D01EAST SIDE BOTH2175846865.02080272.2500316S/05E-28D01EAST SIDE BOTH2175846865.02080272.2500316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28D01EAST SIDE BOTH218 <td>16S/04E-24R01</td> <td>PRESSURE 400</td> <td>202</td> <td>5833826.5</td> <td>2081330.00003</td>	16S/04E-24R01	PRESSURE 400	202	5833826.5	2081330.00003
16S/04E-25Q01PRESSURE 4002055832125.52076199.7500116S/04E-27G01PRESSURE 1802065823057.02078926.7500116S/04E-36B01PRESSURE 1802075833029.52074811.8750116S/05E-07G01EAST SIDE BOTH2085836648.02094674.0000316S/05E-17P01EAST SIDE BOTH2095843361.02086999.1250316S/05E-17R01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115836477.02084158.3750316S/05E-19R01PRESSURE 1802125840423.02081360.3750316S/05E-20C01EAST SIDE2135843125.02085051.250316S/05E-20R01EAST SIDE2145845691.0208220.0000316S/05E-20R01EAST SIDE2165833466.82077678.0532016S/05E-20R01EAST SIDE2165833466.82077678.0532016S/05E-28D01EAST SIDE BOTH2175846865.02080272.2500316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-30C01PRESSURE 18021	16S/04E-25A01	PRESSURE 400	203	5834115.0	2080854.00001
16S/04E-27G01PRESSURE 1802065823057.02078926.7500116S/04E-36B01PRESSURE 1802075833029.52074811.8750116S/05E-07G01EAST SIDE BOTH2085836648.02094674.0000316S/05E-17P01EAST SIDE BOTH2095843361.02086999.1250316S/05E-17R01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115836647.02081360.3750316S/05E-19R01PRESSURE 1802125840423.02081360.3750316S/05E-20C01EAST SIDE2135843125.02085085.1250316S/05E-20R01EAST SIDE2145845691.0208220.0000316S/05E-20R01EAST SIDE2165833466.82077678.0532016S/05E-20R01EAST SIDE2165833466.82077678.0532016S/05E-20R01EAST SIDE216583466.82077678.0532016S/05E-28D01EAST SIDE BOTH2175846865.02080272.2500316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28P01EAST SIDE BOTH2185847355.52077784.3750316S/05E-30C01PRESSURE 1802195836401.52080129.50003	16S/04E-25K01	PRESSURE 180	204	5832503.0	2077482.12501
16S/04E-36B01PRESSURE 1802075833029.52074811.8750116S/05E-07G01EAST SIDE BOTH2085836648.02094674.0000316S/05E-17P01EAST SIDE BOTH2095843361.02086999.1250316S/05E-17R01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115836477.02084158.3750316S/05E-19R01PRESSURE 1802125840423.02081360.3750316S/05E-20H01EAST SIDE2135843125.02085055.1250316S/05E-20R01EAST SIDE2145845691.0208220.0000316S/05E-27G01EAST SIDE2165853466.82077678.0532016S/05E-28D01EAST SIDE BOTH2175846865.02080272.2500316S/05E-28P01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28P01EAST SIDE BOTH2185847355.52077784.3750316S/05E-30C01PRESSURE 1802195836401.52080129.50003	16S/04E-25Q01	PRESSURE 400	205	5832125.5	2076199.75001
16S/05E-07G01EAST SIDE BOTH2085836648.02094674.0000316S/05E-17P01EAST SIDE BOTH2095843361.02086999.1250316S/05E-17R01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115836477.02084158.3750316S/05E-19R01PRESSURE 1802125840423.02081360.3750316S/05E-20H01EAST SIDE2135843125.02085585.1250316S/05E-20R01EAST SIDE2145845691.0208220.0000316S/05E-20R01EAST SIDE216583466.82077678.0532016S/05E-20R01EAST SIDE2165853466.82077678.0532016S/05E-20R01EAST SIDE BOTH2175846865.02080272.2500316S/05E-28D01EAST SIDE BOTH2185847355.52077784.3750316S/05E-28P01EAST SIDE BOTH2185847355.52077784.3750316S/05E-30C01PRESSURE 1802195836401.52080129.50003	16S/04E-27G01	PRESSURE 180	206	5823057.0	2078926.75001
16S/05E-17P01EAST SIDE BOTH2095843361.02086999.1250316S/05E-17R01EAST SIDE SHALLOW2105845212.02087024.2500316S/05E-19F01PRESSURE 1802115836477.02084158.3750316S/05E-19R01PRESSURE 1802125840423.02081360.3750316S/05E-20C01EAST SIDE2135843125.02085585.1250316S/05E-20H01EAST SIDE2145845691.0208220.0000316S/05E-20R01EAST SIDE BOTH2155845834.02082220.000316S/05E-27G01EAST SIDE2165853466.82077678.0532016S/05E-28D01EAST SIDE BOTH2175846865.02080272.2500316S/05E-28P01EAST SIDE BOTH2185847355.52077784.3750316S/05E-30C01PRESSURE 1802195836401.52080129.50003	16S/04E-36B01	PRESSURE 180	207	5833029.5	2074811.87501
16S/05E-17R01 EAST SIDE SHALLOW 210 5845212.0 2087024.25003 16S/05E-19F01 PRESSURE 180 211 5836477.0 2084158.37503 16S/05E-19R01 PRESSURE 180 212 5840423.0 2081360.37503 16S/05E-20C01 EAST SIDE 213 5843125.0 208585.12503 16S/05E-20H01 EAST SIDE 214 5845691.0 2085074.25003 16S/05E-20R01 EAST SIDE 215 5845834.0 2082220.00003 16S/05E-27G01 EAST SIDE 216 5853466.8 2077678.05320 16S/05E-28D01 EAST SIDE BOTH 217 5846865.0 2080272.25003 16S/05E-28D01 EAST SIDE BOTH 217 5846865.0 2080272.25003 16S/05E-28D01 EAST SIDE BOTH 218 5847355.5 2077784.37503 16S/05E-28P01 EAST SIDE BOTH 218 5847355.5 2077784.37503 16S/05E-30C01 PRESSURE 180 219 5836401.5 2080129.50003	16S/05E-07G01	EAST SIDE BOTH	208	5836648.0	2094674.00003
16S/05E-19F01PRESSURE 1802115836477.02084158.3750316S/05E-19R01PRESSURE 1802125840423.02081360.3750316S/05E-20C01EAST SIDE2135843125.02085585.1250316S/05E-20H01EAST SIDE2145845691.02085074.2500316S/05E-20R01EAST SIDE BOTH2155845834.02082220.0000316S/05E-27G01EAST SIDE2165853466.82077678.0532016S/05E-28D01EAST SIDE BOTH2175846865.02080272.2500316S/05E-28P01EAST SIDE BOTH2185847355.52077784.3750316S/05E-30C01PRESSURE 1802195836401.52080129.50003	16S/05E-17P01	EAST SIDE BOTH	209	5843361.0	2086999.12503
16S/05E-19R01PRESSURE 1802125840423.02081360.3750316S/05E-20C01EAST SIDE2135843125.02085585.1250316S/05E-20H01EAST SIDE2145845691.02085074.2500316S/05E-20R01EAST SIDE BOTH2155845834.02082220.0000316S/05E-27G01EAST SIDE2165853466.82077678.0532016S/05E-28D01EAST SIDE BOTH2175846865.02080272.2500316S/05E-28P01EAST SIDE BOTH2185847355.52077784.3750316S/05E-30C01PRESSURE 1802195836401.52080129.50003	16S/05E-17R01	EAST SIDE SHALLOW	210	5845212.0	2087024.25003
16S/05E-20C01EAST SIDE2135843125.02085585.1250316S/05E-20H01EAST SIDE2145845691.02085074.2500316S/05E-20R01EAST SIDE BOTH2155845834.02082220.0000316S/05E-27G01EAST SIDE2165853466.82077678.0532016S/05E-28D01EAST SIDE BOTH2175846885.02080272.2500316S/05E-28P01EAST SIDE BOTH2185847355.52077784.3750316S/05E-30C01PRESSURE 1802195836401.52080129.50003	16S/05E-19F01	PRESSURE 180	211	5836477.0	2084158.37503
16S/05E-20H01 EAST SIDE 214 5845691.0 2085074.25003 16S/05E-20R01 EAST SIDE BOTH 215 5845834.0 2082220.00003 16S/05E-27G01 EAST SIDE 216 5853466.8 2077678.05320 16S/05E-28D01 EAST SIDE BOTH 217 5846885.0 2080272.25003 16S/05E-28P01 EAST SIDE BOTH 218 5847355.5 2077784.37503 16S/05E-30C01 PRESSURE 180 219 5836401.5 2080129.50003	16S/05E-19R01	PRESSURE 180	212	5840423.0	2081360.37503
16S/05E-20R01 EAST SIDE BOTH 215 5845834.0 2082220.00003 16S/05E-27G01 EAST SIDE 216 5853466.8 2077678.05320 16S/05E-28D01 EAST SIDE BOTH 217 5846865.0 2080272.25003 16S/05E-28P01 EAST SIDE BOTH 218 5847355.5 2077784.37503 16S/05E-30C01 PRESSURE 180 219 5836401.5 2080129.50003	16S/05E-20C01	EAST SIDE	213	5843125.0	2085585.12503
16S/05E-27G01 EAST SIDE 216 5853466.8 2077678.05320 16S/05E-28D01 EAST SIDE BOTH 217 5846865.0 2080272.25003 16S/05E-28P01 EAST SIDE BOTH 218 5847355.5 2077784.37503 16S/05E-30C01 PRESSURE 180 219 5836401.5 2080129.50003	16S/05E-20H01	EAST SIDE	214	5845691.0	2085074.25003
16S/05E-28D01 EAST SIDE BOTH 217 5846865.0 2080272.25003 16S/05E-28P01 EAST SIDE BOTH 218 5847355.5 2077784.37503 16S/05E-30C01 PRESSURE 180 219 5836401.5 2080129.50003	16S/05E-20R01	EAST SIDE BOTH	215	5845834.0	2082220.00003
16S/05E-28P01 EAST SIDE BOTH 218 5847355.5 2077784.37503 16S/05E-30C01 PRESSURE 180 219 5836401.5 2080129.50003	16S/05E-27G01	EAST SIDE	216	5853466.8	2077678.05320
16S/05E-30C01 PRESSURE 180 219 5836401.5 2080129.50003	16S/05E-28D01	EAST SIDE BOTH	217	5846865.0	2080272.25003
	16S/05E-28P01	EAST SIDE BOTH	218	5847355.5	2077784.37503
16S/05E-30G01 PRESSURE 180 220 5837912.0 2078876.87503	16S/05E-30C01	PRESSURE 180	219	5836401.5	2080129.50003
	16S/05E-30G01	PRESSURE 180	220	5837912.0	2078876.87503

EALOE	EAL OF
	2 August, 2007
	X-97994701-0
	EPA R9#03-238
Monterey County V	Vater Resources Agency

STATE WELL NUMBER	AQUIFER	MAP ID	FALSE EASTING ¹	FALSE NORTHING ¹
16S/05E-30J02	PRESSURE 400	221	5840526.5	2077512.50003
16S/05E-31A01	PRESSURE 180	222	5838804.0	2075067.12503
16S/05E-31Q01	PRESSURE 180	223	5837656.0	2070857.75003
16S/05E-32C01	PRESSURE 180	224	5843159.0	2075228.62503
16S/05E-32M01	FOREBAY	225	5840439.0	2072879.00003
16S/05E-33F01	FOREBAY	226	5847064.0	2072544.75003
16S/05E-33Q01	FOREBAY	227	5846731.0	2071679.00003
16S/05E-35C01	FOREBAY	228	5857923.0	2074215.75003
16S/05E-35L01	FOREBAY	229	5857341.0	2072381.25003
17S/04E-01D01	PRESSURE 180	230	5829970.4	2070190.88233
17S/05E-01R01	FOREBAY	231	5863270.5	2064114.75003
17S/05E-02G01	FOREBAY	232	5858061.5	2067655.75001
17S/05E-03B01	FOREBAY	233	5852910.5	2069821.37503
17S/05E-04C01	FOREBAY	234	5846947.5	2068985.25003
17S/05E-04K01	FOREBAY	235	5847433.5	2066928.37503
17S/05E-04N01	FOREBAY	236	5844523.0	2064819.50003
17S/05E-06Q01	FOREBAY	237	5837274.0	2065350.12503
17S/05E-09G01	FOREBAY	238	5846689.0	2062431.75003
17S/05E-09Q01	FOREBAY	239	5846868.5	2059437.25003
17S/05E-10Q01	FOREBAY	240	5853142.5	2060133.00003
17S/05E-12B01	FOREBAY	241	5864362.0	2062470.37503
17S/05E-12B02	FOREBAY	242	5863570.5	2063023.50003
17S/05E-12B03	FOREBAY	243	5862636.0	2063300.00003
17S/05E-13L02	FOREBAY	244	5861995.0	2054065.12503
17S/05E-14D01	FOREBAY	245	5855476.7	2057512.98904
17S/05E-14G01	FOREBAY	246	5858431.5	2057156.87503
17S/05E-21A01	FOREBAY	247	5847203.9	2053734.78530
17S/05E-23L01	FOREBAY	248	5855276.5	2049667.00003
17S/05E-25L01	FOREBAY	249	5861282.5	2044709.87503
17S/05E-36F02	FOREBAY	250	5861156.5	2040988.13679
17S/06E-16N01	FOREBAY	251	5876658.0	2053579.37503
17S/06E-17R01	FOREBAY	252	5875370.0	2053960.00003
17S/06E-19D01	FOREBAY	253	5865512.0	2052870.75003
17S/06E-20K01	FOREBAY	254	5874270.5	2050202.50003
17S/06E-20Q02	FOREBAY	255	5873861.0	2049734.12503
17S/06E-20Q03	FOREBAY	256	5873624.0	2049413.37503
17S/06E-27E03	FOREBAY	257	5881725.5	2046512.12503

Monterey County Water Resources Agency	í
EPA R9#03-238	ŝ
X-97994701-0	Ì
2 August, 2007	ľ

				2 August, 2007	
STATE WELL NUMBER	AQUIFER	MAP ID	FALSE	FALSE	
			EASTING ¹	NORTHING ¹	
17S/06E-27K01	FOREBAY	258	5884526.5	2044144.50003	
17S/06E-27L01	FOREBAY	259	5883319.0	2044534.62503	
17S/06E-28N01	FOREBAY	260	5876603.5	2042971.37503	
17S/06E-29C01	FOREBAY	261	5871659.0	2048323.00003	
17S/06E-29K01	FOREBAY	262	5873377.5	2045490.50003	
17S/06E-29Q01	FOREBAY	263	5873361.0	2045274.25003	
17S/06E-30F01	FOREBAY	264	5866434.0	2047190.00003	
17S/06E-32G01	FOREBAY	265	5873481.5	2040947.12503	
17S/06E-32J02	FOREBAY	266	5874264.0	2039466.50003	
17S/06E-35F01	FOREBAY	267	5888535.0	2040776.00003	
17S/06E-35J01	FOREBAY	268	5890370.5	2039573.75003	
18S/06E-01E01	FOREBAY	269	5892201.0	2033873.12503	
18S/06E-02N01	FOREBAY	270	5886656.0	2032336.12503	
18S/06E-02R01	FOREBAY	271	5890070.0	2032210.75003	
18S/06E-03P01	FOREBAY	272	5881836.0	2032629.37503	
18S/06E-05H01	FOREBAY	273	5874765.0	2035980.12503	
18S/06E-07A01	FOREBAY	274	5868250.5	2031805.25003	
18S/06E-08R01	FOREBAY	275	5873246.0	2027074.87503	
18S/06E-09M02	FOREBAY	276	5875856.5	2028751.00003	
18S/06E-11J01	FOREBAY	277	5890622.5	2027590.87503	
18S/06E-12A01	FOREBAY	278	5896424.0	2030093.87503	
18S/06E-12R02	FOREBAY	279	5895096.5	2026768.25003	
18S/06E-14B01	FOREBAY	280	5888379.5	2025469.87503	
18S/06E-14R01	FOREBAY	281	5890625.0	2022391.37503	
18S/06E-15F01	FOREBAY	282	5882187.0	2023781.12503	
18S/06E-15M01	FOREBAY	283	5880584.0	2022838.50003	
18S/06E-16L01	FOREBAY	284	5876773.5	2023478.50003	
18S/06E-21Q01	FOREBAY	285	5878665.0	2016542.37503	
18S/06E-25F01	FOREBAY	286	5891762.0	2013188.12503	
18S/06E-26R01	FOREBAY	287	5890408.5	2011271.25003	
18S/06E-27A01	FOREBAY	288	5883864.0	2015914.75003	
18S/06E-28J01	FOREBAY	289	5879251.0	2013091.87503	
18S/06E-34B01	FOREBAY	290	5882838.0	2010128.37503	
18S/07E-18K01	FOREBAY	291	5899619.5	2023322.62503	
18S/07E-18P01	FOREBAY	292	5897367.5	2022162.75003	
18S/07E-19G02	FOREBAY	293	5899561.5	2019657.12503	
18S/07E-19N01	FOREBAY	294	5896875.0	2016213.75002	

18S/07E-28K01 FOREBAY 296 5909064.5 2012996.1250 18S/07E-28N02 FOREBAY 297 5906995.5 2011573.2500 18S/07E-29J01 FOREBAY 298 5906172.5 2012704.5000 18S/07E-29J01 FOREBAY 299 5901432.0 2012790.8750 18S/07E-29M01 FOREBAY 299 5901432.0 2012790.8750 18S/07E-32G02 FOREBAY 300 5905129.0 2008896.3750 18S/07E-34P02 FOREBAY 301 5913853.5 2006429.5000 19S/06E-01H01 FOREBAY 302 5894418.0 2003322.5000 19S/06E-03K01 FOREBAY 303 5880577.0 2003637.6250 19S/06E-12A01 FOREBAY 304 5882172.5 2003068.0000 19S/06E-12A01 FOREBAY 305 5887118.5 1999053.2500 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.2500 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 <t< th=""><th></th><th colspan="2"></th><th>FALSE</th><th>FALSE</th></t<>				FALSE	FALSE
18S/07E-28K01 FOREBAY 296 5909064.5 2012996.1250 18S/07E-28N02 FOREBAY 297 5906995.5 2011573.2500 18S/07E-29J01 FOREBAY 298 5906172.5 2012704.5000 18S/07E-29J01 FOREBAY 299 5901432.0 2012790.8750 18S/07E-29M01 FOREBAY 299 5901432.0 2012790.8750 18S/07E-32G02 FOREBAY 300 5905129.0 2008896.3750 18S/07E-34P02 FOREBAY 301 5913853.5 2006429.5000 19S/06E-01H01 FOREBAY 302 5894418.0 2003322.5000 19S/06E-03E02 FOREBAY 303 5880577.0 2003637.6250 19S/06E-12A01 FOREBAY 304 5882172.5 2003068.0000 19S/06E-12A01 FOREBAY 305 5887118.5 1999053.2500 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOR	STATE WELL NUMBER	AQUIFER	MAPID	EASTING ¹	NORTHING ¹
18S/07E-28N02 FOREBAY 297 5906995.5 2011573.2500 18S/07E-29J01 FOREBAY 298 5906172.5 2012704.5000 18S/07E-29M01 FOREBAY 299 5901432.0 2012790.8750 18S/07E-32G02 FOREBAY 300 5905129.0 2008896.3750 18S/07E-34P02 FOREBAY 301 5913853.5 2006429.5000 19S/06E-01H01 FOREBAY 302 5894418.0 2003322.5000 19S/06E-03E02 FOREBAY 303 5880577.0 2003637.6250 19S/06E-03K01 FOREBAY 304 5882172.5 2003068.0000 19S/06E-12A01 FOREBAY 305 5887118.5 1999053.2500 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.2500 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 <t< td=""><td>18S/07E-20K01</td><td>FOREBAY</td><td>295</td><td>5903526.5</td><td>2016596.50003</td></t<>	18S/07E-20K01	FOREBAY	295	5903526.5	2016596.50003
18S/07E-29J01 FOREBAY 298 5906172.5 2012704.5000 18S/07E-29M01 FOREBAY 299 5901432.0 2012790.8750 18S/07E-32G02 FOREBAY 300 5905129.0 2008896.3750 18S/07E-34P02 FOREBAY 301 5913853.5 2006429.5000 19S/06E-01H01 FOREBAY 302 5894418.0 2003322.5000 19S/06E-03E02 FOREBAY 303 5880577.0 2003637.6250 19S/06E-03K01 FOREBAY 304 5882172.5 2003068.0000 19S/06E-12A01 FOREBAY 305 5887118.5 1999053.2500 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.2500 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-05B02 FOREBAY 309 5907241.5 200938.1250 19S/07E-10P02 <td< td=""><td>18S/07E-28K01</td><td>FOREBAY</td><td>296</td><td>5909064.5</td><td>2012996.12503</td></td<>	18S/07E-28K01	FOREBAY	296	5909064.5	2012996.12503
18S/07E-29M01 FOREBAY 299 5901432.0 2012790.8750 18S/07E-32G02 FOREBAY 300 5905129.0 2008896.3750 18S/07E-34P02 FOREBAY 301 5913853.5 2006429.5000 19S/06E-01H01 FOREBAY 302 5894418.0 2003322.5000 19S/06E-03E02 FOREBAY 303 5880577.0 2003637.6250 19S/06E-03K01 FOREBAY 304 5882172.5 2003068.0000 19S/06E-11C01 FOREBAY 305 5887118.5 1999053.2500 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.2500 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOREBAY 309 5907241.5 200938.1250 19S/07E-05B02 FOREBAY 310 5903922.5 2005128.0000 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01	18S/07E-28N02	FOREBAY	297	5906995.5	2011573.25003
18S/07E-32G02 FOREBAY 300 5905129.0 2008896.3750 18S/07E-34P02 FOREBAY 301 5913853.5 2006429.5000 19S/06E-01H01 FOREBAY 302 5894418.0 2003322.5000 19S/06E-03E02 FOREBAY 303 5880577.0 2003637.6250 19S/06E-03K01 FOREBAY 304 5882172.5 2003068.0000 19S/06E-11C01 FOREBAY 305 5887118.5 1999053.2500 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.2500 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-05B02 FOREBAY 309 5907241.5 200938.1250 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 592306.5 1993005.8750	18S/07E-29J01	FOREBAY	298	5906172.5	2012704.50003
18S/07E-34P02 FOREBAY 301 5913853.5 2006429.5000 19S/06E-01H01 FOREBAY 302 5894418.0 2003322.5000 19S/06E-03E02 FOREBAY 303 5880577.0 2003637.6250 19S/06E-03K01 FOREBAY 304 5882172.5 2003068.0000 19S/06E-11C01 FOREBAY 305 5887118.5 1999053.2500 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.2500 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-05B02 FOREBAY 309 5907241.5 200938.1250 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	18S/07E-29M01	FOREBAY	299	5901432.0	2012790.87503
19S/06E-01H01 FOREBAY 302 5894418.0 2003322.5000 19S/06E-03E02 FOREBAY 303 5880577.0 2003637.6250 19S/06E-03K01 FOREBAY 304 5882172.5 2003068.0000 19S/06E-11C01 FOREBAY 305 5887118.5 1999053.2500 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.25000 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOREBAY 309 5907241.5 200938.1250 19S/07E-05B02 FOREBAY 310 5903922.5 2005128.0000 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	18S/07E-32G02	FOREBAY	300	5905129.0	2008896.37503
19S/06E-03E02 FOREBAY 303 5880577.0 2003637.6250 19S/06E-03K01 FOREBAY 304 5882172.5 2003068.0000 19S/06E-11C01 FOREBAY 305 5887118.5 1999053.2500 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.25000 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOREBAY 309 5907241.5 200938.1250 19S/07E-05B02 FOREBAY 310 5903922.5 2005128.0000 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	18S/07E-34P02	FOREBAY	301	5913853.5	2006429.50003
19S/06E-03K01 FOREBAY 304 5882172.5 2003068.0000 19S/06E-11C01 FOREBAY 305 5887118.5 1999053.2500 19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.2500 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOREBAY 309 5907241.5 200938.1250 19S/07E-05B02 FOREBAY 310 5903922.5 2005128.0000 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	19S/06E-01H01	FOREBAY	302	5894418.0	2003322.50003
19S/06E-11C01 FOREBAY 305 5887118.5 1999053.2500 19S/06E-12A01 FOREBAY 306 589541.5 1999532.5000 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.25000 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.50000 19S/07E-04Q01 FOREBAY 309 5907241.5 200938.12500 19S/07E-05B02 FOREBAY 310 5903922.5 2005128.0000 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	19S/06E-03E02	FOREBAY	303	5880577.0	2003637.62503
19S/06E-12A01 FOREBAY 306 5895441.5 1999532.5000 19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.2500 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOREBAY 309 5907241.5 200938.1250 19S/07E-05B02 FOREBAY 310 5903922.5 2005128.0000 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	19S/06E-03K01	FOREBAY	304	5882172.5	2003068.00003
19S/07E-03H02 UPPER VALLEY 307 5916058.0 2002263.2500 19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOREBAY 309 5907241.5 200938.1250 19S/07E-05B02 FOREBAY 310 5903922.5 2005128.0000 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	19S/06E-11C01	FOREBAY	305	5887118.5	1999053.25003
19S/07E-04G01 FOREBAY 308 5908976.0 2002192.5000 19S/07E-04Q01 FOREBAY 309 5907241.5 2000938.1250 19S/07E-05B02 FOREBAY 310 5903922.5 2005128.0000 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	19S/06E-12A01	FOREBAY	306	5895441.5	1999532.50003
19S/07E-04Q01 FOREBAY 309 5907241.5 2000938.1250 19S/07E-05B02 FOREBAY 310 5903922.5 2005128.0000 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	19S/07E-03H02	UPPER VALLEY	307	5916058.0	2002263.25003
19S/07E-05B02 FOREBAY 310 5903922.5 2005128.0000 19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	19S/07E-04G01	FOREBAY	308	5908976.0	2002192.50003
19S/07E-10P02 UPPER VALLEY 311 5914112.0 1994937.3750 19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	19S/07E-04Q01	FOREBAY	309	5907241.5	2000938.12503
19S/07E-13D01 UPPER VALLEY 312 5923060.5 1993005.8750	19S/07E-05B02	FOREBAY	310	5903922.5	2005128.00003
	19S/07E-10P02	UPPER VALLEY	311	5914112.0	1994937.37503
19S/07E-13D02 UPPER VALLEY 313 5922703.0 1993016.8750	19S/07E-13D01	UPPER VALLEY	312	5923060.5	1993005.87503
	19S/07E-13D02	UPPER VALLEY	313	5922703.0	1993016.87503
19S/07E-13D03 UPPER VALLEY 314 5921177.5 1994464.2500	19S/07E-13D03	UPPER VALLEY	314	5921177.5	1994464.25003
19S/07E-16D01 UPPER VALLEY 315 5907215.0 1993447.2500	19S/07E-16D01	UPPER VALLEY	315	5907215.0	1993447.25003
19S/07E-20A01 UPPER VALLEY 316 5904728.0 1988737.7500	19S/07E-20A01	UPPER VALLEY	316	5904728.0	1988737.75003
19S/07E-20A02 UPPER VALLEY 317 5905140.0 1988780.5000	19S/07E-20A02	UPPER VALLEY	317	5905140.0	1988780.50003
19S/07E-23F01 UPPER VALLEY 318 5917918.5 1986682.8750	19S/07E-23F01	UPPER VALLEY	318	5917918.5	1986682.87503
19S/07E-23G01 UPPER VALLEY 319 5919819.5 1985678.5000	19S/07E-23G01	UPPER VALLEY	319	5919819.5	1985678.50003
19S/07E-24H02 UPPER VALLEY 320 5927076.5 1985899.1250	19S/07E-24H02	UPPER VALLEY	320	5927076.5	1985899.12503
19S/07E-36N01 UPPER VALLEY 321 5921376.0 1974705.7500	19S/07E-36N01	UPPER VALLEY	321	5921376.0	1974705.75003
19S/08E-30A01 UPPER VALLEY 322 5931268.5 1981945.6250	19S/08E-30A01	UPPER VALLEY	322	5931268.5	1981945.62503
20S/08E-05C02 UPPER VALLEY 323 5933968.0 1972500.3750	20S/08E-05C02	UPPER VALLEY	323	5933968.0	1972500.37503
20S/08E-05R03 UPPER VALLEY 324 5935855.5 1968133.0000	20S/08E-05R03	UPPER VALLEY	324	5935855.5	1968133.00003
20S/08E-06B01 UPPER VALLEY 325 5929631.0 1971657.5000	20S/08E-06B01	UPPER VALLEY	325	5929631.0	1971657.50003
20S/08E-07E01 UPPER VALLEY 326 5927847.5 1965744.2500	20S/08E-07E01	UPPER VALLEY	326	5927847.5	1965744.25003
20S/08E-15H03 UPPER VALLEY 327 5946414.0 1959720.3750	20S/08E-15H03	UPPER VALLEY	327	5946414.0	1959720.37503
20S/08E-16C01 UPPER VALLEY 328 5938055.0 1961243.3750	20S/08E-16C01	UPPER VALLEY	328	5938055.0	1961243.37501
20S/08E-17K03 UPPER VALLEY 329 5934573.0 1958618.6250	20S/08E-17K03	UPPER VALLEY	329	5934573.0	1958618.62503
20S/08E-34G01 UPPER VALLEY 330 5944061.5 1944379.5000	20S/08E-34G01	UPPER VALLEY	330	5944061.5	1944379.50003
20S/08E-36R01 UPPER VALLEY 331 5957517.0 1941628.6250					

STATE WELL NUMBER	AQUIFER	MAP ID	FALSE	FALSE
STATE WELL NUMBER	AQUIFER	MAP ID	EASTING ¹	NORTHING ¹
21S/08E-15J01	UPPER VALLEY	332	5946267.0	1926489.62503
21S/09E-06C01	UPPER VALLEY	333	5959365.5	1939884.62503
21S/09E-16E02	UPPER VALLEY	334	5967913.5	1928310.37503
21S/09E-22J01	UPPER VALLEY	335	5976378.5	1921774.75003
21S/09E-24Q01	UPPER VALLEY	336	5985537.5	1920320.00003
21S/10E-30E02	UPPER VALLEY	337	5988110.5	1916891.25003
21S/10E-32N01	UPPER VALLEY	338	5993930.5	1907839.00003
22S/10E-09P01	UPPER VALLEY	339	6000619.0	1897117.87503
22S/10E-16P01	UPPER VALLEY	340	6000072.0	1892154.87503
22S/10E-21C01	UPPER VALLEY	341	6001268.5	1890089.75003
22S/10E-22N01	UPPER VALLEY	342	6004921.0	1886561.87503
22S/10E-28B01	UPPER VALLEY	343	6001816.0	1886849.25003
22S/10E-34G01	UPPER VALLEY	344	6007012.0	1879185.87503

¹ State Plane Coordinate System, California Zone IV, Feet, North American Datum 1983

*Coordinates to be collected

Table 5 COASTAL WELLS AND LOCATIONS

STATE WELL NUMBER	AQUIFER	MAP ID	FALSE	FALSE
STATE WELL NUMBER	AQUIFER	MAP ID	EASTING ¹	NORTHING ¹
13S/01E-25R01	PRESSURE 900	1	5742345.5	2174687.00002
13S/02E-15M01	PRUNEDALE	2	5757881.5	2185405.50002
13S/02E-19Q03	PRESSURE 900	3	5746313.5	2179184.50002
13S/02E-20J01	PRESSURE 400	4	5752096.0	2180981.25002
13S/02E-28L02	PRESSURE BOTH	5	5755055.5	2175441.75002
13S/02E-28M02	PRESSURE 400	6	5753447.0	2175997.50002
13S/02E-32J03	PRESSURE 400	7	5752560.0	2170401.75002
13S/02E-33N04	PRESSURE 400	8	5753898.0	2169605.00002
13S/02E-34G01	PRESSURE 400	9	5760129.5	2170052.25002
13S/02E-34M01	PRESSURE 400	10	5757997.5	2169621.75002
14S/01E-13J02	PRESSURE 400	11	5741048.0	2154289.50002
14S/02E-01C01	EASTSIDE DEEP	12	5771477.5	2167454.25002
14S/02E-02A02	EASTSIDE DEEP	13	5768561.0	2167823.50002
14S/02E-02C03	PRESSURE 400	14	5765109.0	2167416.00002
14S/02E-03H01	PRESSURE 400	15	5762283.0	2166255.50002
14S/02E-03M02	PRESSURE 400	16	5758710.5	2164740.50002
14S/02E-03R02	PRESSURE 400	17	5762517.0	2163892.75002
14S/02E-04B01	PRESSURE 400	18	5755909.0	2167499.00002
14S/02E-04G02	PRESSURE 400	19	5756262.0	2166403.75002
14S/02E-04H01	PRESSURE 400	20	5756715.0	2165886.25002
14S/02E-04N03	PRESSURE 400	21	5753365.0	2163112.75002
14S/02E-05C03	PRESSURE 400	22	5748893.5	2167132.50002
14S/02E-05K02	PRESSURE 400	23	5750829.0	2165370.75002
14S/02E-07A01	PRESSURE 400	24	5747142.5	2162655.25002
14S/02E-07J02	PRESSURE 400	25	5746655.0	2159408.25002
14S/02E-07J03	PRESSURE DEEP ZONE	26	5746476.9	2159735.06998
14S/02E-07L04	PRESSURE 400	27	5743780.0	2159328.00002
14S/02E-07L05	PRESSURE 400	28	5743784.5	2160380.50002
14S/02E-08C03	PRESSURE 400	29	5750055.0	2162036.75002
14S/02E-08M02	PRESSURE 400	30	5747103.0	2159672.50002
14S/02E-09D04	PRESSURE 400	31	5753016.5	2162818.75002
14S/02E-09K02	PRESSURE 400	32	5755450.0	2159946.25002
14S/02E-09N02	PRESSURE 400	33	5752897.5	2158609.50002
14S/02E-10E02	PRESSURE 400	34	5758062.0	2160525.75002
14S/02E-10H01	PRESSURE 400	35	5761492.0	2160761.75002

-		
	2 August, 200	7
	X-97994701-	0
	EPA R9#03-23	8
	Monterey County Water Resources Agenc	y

	10111550		FALSE	FALSE
STATE WELL NUMBER	AQUIFER	MAP ID	EASTING ¹	NORTHING ¹
14S/02E-10M02	PRESSURE 400	36	5757853.5	2159387.75002
14S/02E-11B01	PRESSURE 400	37	5766446.0	2162325.25002
14S/02E-11M03	PRESSURE 400	38	5764448.5	2159266.75002
14S/02E-12N02	PRESSURE 180	39	5769893.5	2158219.50002
14S/02E-13F01	PRESSURE 180	40	5769952.5	2154587.75002
14S/02E-13G01	PRESSURE 400	41	5772057.5	2155470.50002
14S/02E-14A01	PRESSURE 400	42	5767367.0	2156210.25002
14S/02E-14L02	PRESSURE 180	43	5764775.5	2155024.75003
14S/02E-14L03	PRESSURE 400	44	5764610.5	2154419.75002
14S/02E-15A01	PRESSURE 400	45	5761774.5	2157015.50002
14S/02E-15C02	PRESSURE 400	46	5759385.5	2157259.00002
14S/02E-15L02	PRESSURE 180	47	5758452.0	2153366.00003
14S/02E-15N01	PRESSURE 400	48	5757522.5	2153353.25002
14S/02E-15P01	PRESSURE 400	49	5758767.5	2153584.50002
14S/02E-16A02	PRESSURE 400	50	5756957.5	2157123.50002
14S/02E-16G01	PRESSURE 400	51	5755957.0	2155999.50002
14S/02E-16H01	PRESSURE 400	52	5756041.0	2156035.25002
14S/02E-17A02	PRESSURE 400	53	5751744.5	2156837.50002
14S/02E-20B03	PRESSURE 900	54	5750210.5	2151407.25003
14S/02E-21E01	PRESSURE 400	55	5753561.0	2150101.50003
14S/02E-21J01	PRESSURE 180	56	5756896.0	2149447.75002
14S/02E-21L01	PRESSURE 180	57	5754605.0	2149175.75002
14S/02E-22B01	PRESSURE 400	58	5760986.0	2152124.75002
14S/02E-22L01	PRESSURE 400	59	5759725.0	2149855.00002
14S/02E-22P02	PRESSURE 180	60	5758952.5	2146937.25002
14S/02E-23M01	PRESSURE 180	61	5762708.0	2149478.75002
14S/02E-24E01	PRESSURE 180	62	5768326.5	2150393.25002
14S/02E-24P02	PRESSURE 400	63	5769670.0	2146858.75002
14S/02E-24Q01	PRESSURE 180	64	5771942.5	2146772.50003
14S/02E-25D04	PRESSURE 180	65	5768019.0	2145519.50003
14S/02E-26J03	PRESSURE 400	66	5766847.5	2143883.00002
14S/02E-26N03	PRESSURE 180	67	5762617.0	2142567.75002
14S/02E-26P01	PRESSURE 180	68	5764519.0	2141615.00003
14S/02E-27C02	PRESSURE 400	69	5759686.0	2145562.00002
14S/02E-27F02	PRESSURE 180	70	5759825.0	2144647.75002
14S/02E-28C01	PRESSURE 400	71	5753983.5	2146953.50002
14S/02E-32D06	PRESSURE 180	72	5746981.0	2141653.75003

Monterey County Water Resources Agency EPA R9#03-238 X-97994701-0 2 August, 2007

STATE WELL NUMBER	AQUIFER	MAP ID	FALSE	FALSE
			EASTING ¹	NORTHING ¹
14S/02E-33P01	PRESSURE BOTH	73	5756348.0	2138806.75003
14S/02E-34A04	PRESSURE 180	74	5761465.0	2141623.00002
14S/02E-34B03	PRESSURE 180	75	5759909.5	2141431.00002
14S/02E-36E01	PRESSURE 180	76	5768600.0	2138685.00002
14S/02E-36G01	PRESSURE 400	77	5770039.0	2139297.50002
14S/03E-06L02	EASTSIDE DEEP	78	5775957.0	2164155.50002
14S/03E-07P02	EASTSIDE SHALLOW	79	5775832.0	2157899.00003
14S/03E-18E02	PRESSURE 400	80	5774633.5	2155704.50003
14S/03E-19Q02	PRESSURE 180	81	5776192.0	2146948.50002
14S/03E-30E03	PRESSURE 400	82	5774081.0	2143975.75002
14S/03E-30F01	PRESSURE 180	83	5775609.5	2144673.00002
14S/03E-31B01	PRESSURE 180	84	5776312.0	2140030.50002
15S/02E-12C01	PRESSURE 180	85	5769441.0	2130513.75002

¹ State Plane Coordinate System, California Zone IV, Feet, North American Datum 1983

Table 6 REQUIREMENTS FOR SAMPLE COLLECTION¹

ANALYTE	CONTAINER TYPE	SAMPLE VOLUME	PRESERATIVE	HOLDING TIME
Calcium (Ca)	polyethylene (HDPE ²)	200 mL ³	HNO3 pH<2	3 days w/o pres. 6 months w/ pres.
CATION ANION BALANCE ⁴	N/A Calculation	N/A Calculation	N/A Calculation	N/A Calculation
Chloride (CI) ⁵	polyethylene (HDPE ¹)	100 mL ²	4±2°C	28 days
Conductivity (SEC) ⁵	polyethylene (HDPE ¹)	100 mL ²	4±2°C	28 days
Magnesium (Mg)	polyethylene (HDPE ¹)	200 mL ²	HNO3 pH<2	3 days w/o pres. 6 months w/ pres
Nitrate (NO3) ⁵	polyethylene (HDPE ¹)	100 mL ²	none HSO _{4:} pH<2	48 hours at 4° C 28 days
pH (Laboratory)	polyethylene (HDPE ¹)	30 mL ²	none	48 hours at 4° C
Potassium (K)	polyethylene (HDPE ¹)	200 mL ²	HNO3 pH<2	3 days w/o pres. 6 months w/ pres.
Sodium (Na)	polyethylene (HDPE ¹)	200 mL ²	HNO3 pH<2	3 days w/o pres. 6 months w/ pres
Sulfate (SO4)	polyethylene (HDPE ¹)	100 mL ²	4±2°C	28 days
Total Alkalinity (as CaCO3)	polyethylene (HDPE ¹)	100 mL ²	4±2°C	14 days

1 = CCL QA Manual and SOPs

² = High Density Polyethylene

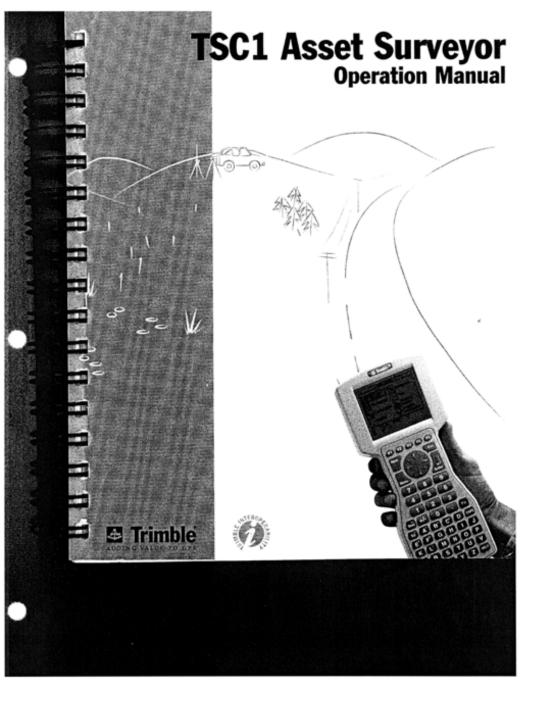
3 = only one 0.5 gal (~2L) container is needed for all analyses

4 = Cation anion balance is a calculation

⁵ = Analytes in partial mineral panel, one pint (~500 mL) container is need for analyses

APPENDICES

APPENDIX A


GLOBAL POSITIONING SYSTEM (GPS) TRAINING

Appendix A-1: GPS Training Record Appendix A-2: TSC1 Asset Surveyor Manual Appendix A-3: Pro XR/XRS Receiver Manual

Geographic Positioning System (GPS) Training Record

Geographic Positioning System (GPS) Training Record	
Name of Trainee	
Name of Trainer	
Date of Training	
	Satisfactory Completion / Understanding
Verification of access to Pathfinder Office software	
Preparation of data dictionary	
Set-up of equipment	
Trimble® TSC1 Asset Surveyor ¹	
Trimble® Pro XR Receiver1	
Connector cables	
Batteries (Asset Surveyor and Receiver)	
Confirmation of communication between Asset Surveyor and	
Receiver	
Acquiring satellites	
Setting up and checking critical settings	
-logging intervals	
-PDOP mask ²	
Proper packing and unpacking of equipment	
also, lease. "B pup aultonous of adaptuous	
Transferring data files from Asset Surveyor to the computer	

¹ The Agency uses Trimble® products, the GPS industry standard. ² PDOP = Position Dilution Of Precision

ないというであるとない。

はため 見 かやまえ きんかん

TSC1 Asset Surveyor

4

Operation Manual

Part Number 34182-05-ENG Version 5.00 October 1999 Revision A

Trimble Navigation Limited Mapping & GIS Systems 645 North Mary Avenue P.O. Box 3642 Sunnyvale, CA 94088-3642 U.S.A.

1-800-827-8000 in North America +1-408-481-8000 International Fax: +1-408-481-7744 www.trimble.com

1 Quick Setup

The instructions in this chapter are a simplified version of the various steps found in Chapters 4, 5, and 6 of this manual. The purpose of the simplified version is to provide quick setup guides with reasonable default values that can be distributed to field crews to ensure proper setup of rover or base station receivers.

Data is logged to the TSC1 with the Asset Surveyor software. For full details on configuration and data collection, refer to the TSC1 Asset Surveyor Software User Guide.

 \bowtie

Note – The steps outlined in this chapter do not include steps required to collect data using carrier phase information. For instructions on how to collect high accuracy features, see Chapter 7, Carrier Phase Data Collection.

1.1 Before Leaving the Office

- Install the Pathfinder Office software on your office computer (refer to the Pathfinder Office Getting Started Guide).
- Using the Pathfinder Office software, prepare any data files or data dictionaries you require, and transfer them to the TSC1. If you want to update GPS or attribute information on features stored in a GIS, import the data files and data dictionary into Pathfinder Office and then transfer them to the TSC1. You may also want to transfer any waypoint and coordinate system files to the datalogger.

TSC1 Asset Surveyor Operation Manual

1-1

Quick Setup		1	
	3.	Check that you have all the required equipment, and that it is operational. Set up and connect your GPS system (the appendix for your GPS receiver lists the equipment and shows you how to connect it).	
	4.	If the GPS receiver has an On/Off switch, turn it on (the Series 4000, GPS Total Station 4700, GPS Total Station 4800, Site Surveyor 4400 and 4600LS receivers have an On/Off switch).	5
		Start the Asset Surveyor software to check that it and the GPS receiver are communicating correctly. If communication is established, the GPS status line appears. If communication fails, an error message pops up on the screen.	
	5.	Check all critical settings in the Asset Surveyor software.	
		You should also check non-critical and display settings, especially if the system has been used by someone else recently. For details of how to configure Asset Surveyor, refer to the TSCI Asset Surveyor Software User Guide.	
	6.	Turn everything off and pack it into carrying cases if you have to travel a significant distance to the survey site. Pack spare sets of batteries if you expect to operate the receiver for any length of time.	2 2
1.2 In th	ne F	ield	C
	1.	Travel to the survey site, remembering to carry all the required equipment with you.	E
	2.	Reassemble the system.	
	3.	If the GPS receiver has an On/Off switch, turn it on. Then start the Asset Surveyor software, if it is not already on.	1
		Wait until the GPS receiver acquires enough satellites to start computing GPS positions, before beginning to work. The number of satellites being tracked displays on the status line.	5
		TSC1 Asset Surveyor Operation Manual	E

TSC Asset Surveyor

Operation Mar val

Trimble

104	should now change sor	ne of the configuration settings as follows:
Mair	n menu	
1.	Configuration	Highlight Configuration then press the
Con	figuration menu	
2.	GPS rover options	Press 🔚
3.	Logging options	Press 🔚
Log	ging options screer	1
4.	Point feature	Synchronized with the base station
5.	Line/area	Synchronized with the base station
6.	Not in feature	Synchronized with the base station
7.	Minimum positions	3
8.	Allow GPS update	'Warn first'
9.	Warning distance	'Any'
10.	To accept	Press
Posl	tion filters screen	
11.	Position mode	'Manual 3D' or 'Overdet. 3D' depending on canopy density
12.	PDOP mask	4 or 6 (depending on receiver)
13.	To accept	Press 🖅

-11

TSC Asset Surveyor

Operation Ma: al

Trimble

- Create a new data file, associating the correct data dictionary with it. Alternatively, re-open an existing data file.
- Begin collecting data. Collect, review and update all the features necessary.
- 6. Close the data file.
- Disconnect and repack the components of the system. Remember to turn off the GPS receiver, if it has an On/Off switch. Return to your office.

1.3 Back in the Office

1

- Transfer the data files from the TSC1 to the PC using the Pathfinder Office software.
- Use the Pathfinder Office software for differential correction, plotting, and exporting the data file(s) to a GIS.
- 3. Recharge the TSC1 datalogger and GPS receiver batteries.

1.4 Rover Configuration

Use the following procedure to set up your system in a rover configuration.

From the Utilities menu, select Factory defaults. This resets the Asset Surveyor software to its default configuration and then restarts the datalogger.

TSC1 Asset Surveyor Operation Manual

1-3

Quick Setup

1

Antenna options screen		
14. Height	Height to antenna's phase center	
15. Measure	'Vertical'	
16. Type	For a list of antenna types, see the TSCI Asset Surveyor Software User Guide	
17. Confirm	Select 'Per feature', 'Per file', or 'Never'	
18. To accept	Press 🖅	
GPS rover options menu		
 To return to the Configuration menu 	Press 🐨	
Configuration menu	_	
20. Communication option	s Press	
21. Real-time input options	Press 📾	
Real-time input options	screen	
22. RTCM age limit	5 or 10 (depending on your radio)	
23. To accept	Press 🛲	
 To return to the Configuration menu 	Press Star	
Configuration menu		
 To exit the Configuration menu 	Press Tec	
on a constantion Manual		1-5

TSC1 Asset Surveyor Operation Manual

1 Quick Setup 1.4.1 Data Collection Use the following procedure to set up your system for rover data collection. Main menu 1. Select Data collection and press (Data collection menu 2. Create a data file Select Create new file: Press 🛲 and then press 🛲 -0r--01-Select Open existing file. Open an existing Press 🚠 data file Select an existing file to append to or update, and press 🚝 3. To exit Data collection Press Te and press The to confirm exit 1.5 **Base Station Configuration** Use the following procedure to set up your system in a base station configuration. Main menu 1. Configuration Highlight Configuration then press the they Configuration menu 2. GPS base station Press and options Press 🛲 3. Logging options TSC1 Asset Surveyor Operation Manual

TSC: Isset Surveyor

Operation Mar

E Trimble

Quick Setup

Logging options screen

1

4.	Measurements	One to five seconds (depending on rover interval and free space)
5.	To accept	Press 🛲
6.	To return to the Configuration menu	Press (194

Configuration menu

7.	To exit the	
	Configuration menu	Press Tee

TSC1 Asset Surveyor Operation Manual

1-7

1.5.1		the following proce	
	data	collection.	dure to set up your system for base station
	Mai	n menu	
	1.	Data collection	Press A
	Data	collection menu	
	2.	Create base file	Press 🚑
	Crea	te File screen	
	3.	Create file	Press 🖅
	Ante	nna options scre	en
	4.	Height	Height to antenna's phase center
	5.	Measure	'Vertical'
	6.	Туре	For a list of antenna types, see the TSC1 Asset Surveyor Software User Guide
	7.	To accept	Press 🛲
ł			TSC1 Asset Surveyor Operation Manual

TSC Asset Surveyor

Operation Ma al

E Trimble

Quick Setup

Reference Position screen

1

008 N 800

8.	Enter reference position	Type lat/lon (or north/east) and altitude, and press 🛲
	-01-	-10-
	Use an existing	Press map , select the waypoint
	waypoint	and press 🚛
	-01-	-or-
	Use an approximate	
	position	Press im and press
	-10-	-Of-
	Leave as is and set in the Pathfinder Office	
	software	Press 🛲

Base Station screen

9. To exit Base station

Press is and press is to confirm exit.

TSC1 Asset Surveyor Operation Manual

1-9

4

About this Manual

Key Symbols

The Asset Surveyor software uses both *hard* (that is, physical) keys on a keypad and *soft* (that is, visual) keys on the datalogger's screen. Hard (physical) keys on the TSC1 keypad are indicated as follows:

🚑, @, @, and so on.

Softkeys on the TSC1 screen are indicated as follows:

Trues, Dill, Mill, and so on.

A softkey is activated by pressing the corresponding function key ((D...(D) on the TSC1 keypad.

Warnings, Cautions, Notes, and Tips

Warnings, cautions, notes, and tips draw attention to important information, and indicate its nature and purpose.

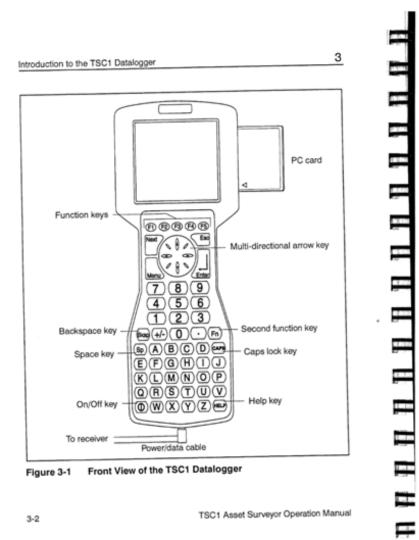
Warning – Warnings alert you to situations that could cause personal injury or unrecoverable data loss.

÷

3%

Caution – Cautions alert you to situations that could cause hardware damage or software error.

 \bowtie


Ð

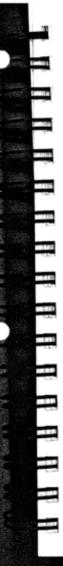
Note - Notes give additional significant information about the subject to increase your knowledge, or guide your actions.

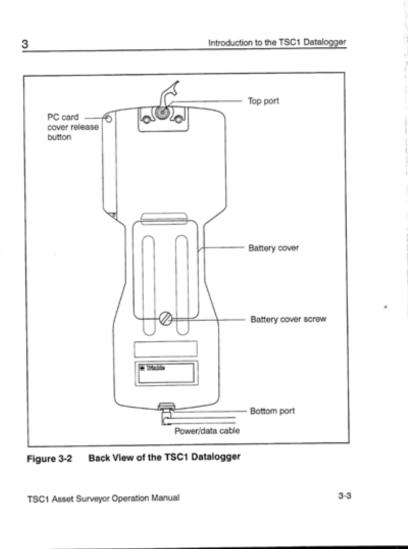
Tip - Tips indicate a shortcut or other time- or labor-saving hint that can help you make better use of the product.

TSC1 Asset Surveyor Operation Manual

xxvii

3-2


TSC1


iset Surveyor

Operation Manu

Trimble

TSC1 Asset Surveyor Operation Manual

3.2 Turning the TSC1 Datalogger On and Off

To turn on the TSC1 datalogger, make sure that power is supplied (see Power Sources, page 3-11). Then press the green on/off key marked ①.

To turn off the TSC1, hold down (1) for one second.

Tip – For the location of the
key and other keys on the TSC1 datalogger's keypad, refer to Figure 3-1.

3.2.1 Hard Keys

TSL. Asset Surveyor

Operation M

ua

Trimble

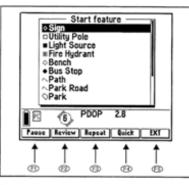
Hard keys are the physical keys on the TSC1 keypad, such as 1, (A), $(\textcircled{\pm}), (\textcircled{\pm}), (\textcircled{\pm}),$

3.2.2 Alternate Keys

Alternate keys give some hard keys a second function. Some of the second functions are displayed on the hard keys in small yellow lettering. To use a second function, press the <u>rn</u> hard key and then press the alternate hard key.

Table 3-1 shows some of the functions that you can access using alternate keys.

Table 3-1 Useful Second Functions


Keys	Function	
(Fn) B	Page down	
(m) 8	Page up	
(Fill (B)	Home	
Ph ®	End	
61 197	Previous screen	
ME	Contrast up	
(Pn)(F)	Contrast down	

3-4

TSC1 Asset Surveyor Operation Manual

3.2.3 Softkeys

з

Softkeys relate to particular forms or fields and only appear when these forms or fields are accessed. For example, the softkey only appears when a line feature is opened for data collection, as this functionality applies to line features only.

3.2.4 Menu Key

To return to the Main menu at any time, press the her hard key. Use this key in conjunction with the key key to move around the Asset Surveyor screens quickly.

TSC1 Asset Surveyor Operation Manual

3-5

3.2.5 Next Key

To simplify the task of moving around menus, the moving hard key offers quick access to open screens (windows).

3.2.6 Help Key

Press the \overline{m} hard key at any time to obtain further information about a topic. When you press it, the *Help* menu appears. To exit *Help*, press $\overline{\mbox{\mbox{${}^{(m)}$}}}$ from the *Help* menu.

3.3 Screen

The TSC1 has an LCD screen. This screen responds to heat, and prolonged exposure to full sunlight can cause it to darken. If the screen does darken, turn it away from direct sunlight until it returns to normal.

Ð

Caution – Repeated exposure to direct sunlight can cause the screen to degrade.

3.3.1 Contrast

To increase the screen contrast, press m E. To decrease the screen contrast, press m F.

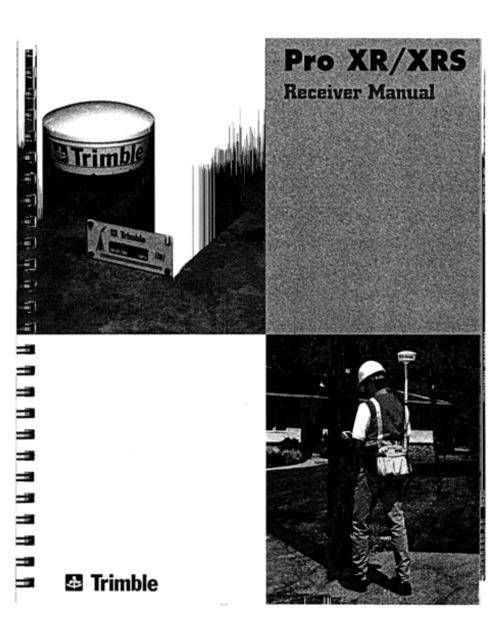
3.3.2 Backlight

To toggle the screen backlight on and off, press in L.

3-6

TSC1 Asset Surveyor Operation Manual

з


. ⊉ Trimble

TSC. Asset Surveyor

Operation Ma

a

https://cloudshare.elmontgomery.com/s/Cm8HHen2GXgbY5g#pdfviewer

Receiver Manual

Part Number 31172-20-ENG Revision A May 1998

Trimble Navigation Limited Mapping and GIS Systems Division 645 North Mary Avenue P.O. Box 3642 Sunnyvale, CA 94088-3642 U.S.A. d.

1-800-827-8000 in North America +1-408-481-8000 International Fax: +1-408-481-7744 www.trimble.com

4 Pro XR/XRS System Equipment

This chapter provides details of the equipment associated with the Pro XR and Pro XRS receivers and shows how to assemble the equipment.

4.1 Pro XR Receiver Front Panel

The Pro XR receiver, shown in Figure 4-1, is mounted in a weatherproof housing.

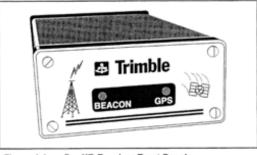


Figure 4-1 Pro XR Receiver Front Panel

Pro XR/XRS Receiver Manual

4-1

4.2.1 Pro XR Status Lights

The two status lights on the front panel of the Pro XR receiver provide the status information listed in Table 4-1.

Table 4-1 Pro XR Status Lights

	GPS	Beacon
OFF	Unit not powered up	Unit not powered up or beacon function is disabled
FAST FLASH	Searching for satellites	Searching for MSK signals
SLOW FLASH	Found one or more satellites. Not enough for a position fix.	Found MSK signal. RTCM data has not been sent to GPS receiver.
ON	Performing position fixes	Good RTCM data is being provided to the GPS receiver

Pro XR/XRS Receiver Manual

4-3

d.

15

4

4.3 Back Panel

4

The Pro XR and Pro XRS receivers have two serial communications ports (RS232) and an antenna cable port. The serial communications ports, shown in Figure 4-3, are 12-pin(m) bulkhead connectors located on the back panel of the Pro XR and Pro XRS receivers.

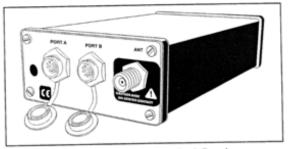


Figure 4-3 Pro XR/XRS Receiver Back Panel

4.3.1 Port A

Port A offers RS232 communication standards. It is designed for NMEA-0183 output and RTCM input.

4.3.2 Port B

Port B also offers RS232 communication standards. It is designed for two-way data flow, external sensor input and power.

4.3.3 Antenna Port

The antenna connector is a TNC(f) connector located on the far right on the back panel of the Pro XR or Pro XRS receiver.

Pro XR/XRS Receiver Manual

4-5

4

Pro XR/XRS System Equipment

4.4 GPS Pro XR Cabling

To use the TSC1 handheld with a GPS Pro XR receiver, connect the system as shown in Figure 4-4. 1

E

E

888

ш

1

F

.

F

F

E

4

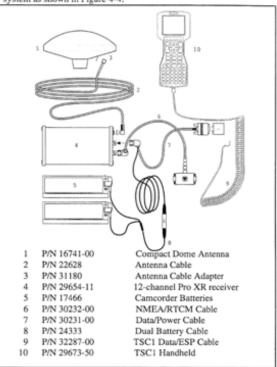


Figure 4-4 GPS Pro XR / TSC1 Connection Diagram

4-6

Pro XR/XRS Receiver Manual

4.7 Pro XR/XRS System Hip Pack

The Pro XR and Pro XRS systems come equipped with an ergonomic hip pack carrying system, see Figure 4-18. The receiver, batteries and antenna are carried in the field using this hip pack/strapping system.

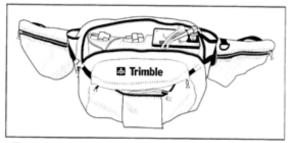


Figure 4-18 Pro XR/XRS System Hip Pack

4.7.1 Pro XR/XRS Hip Pack Contents

The Pro XR and Pro XRS systems are packed so that they are almost ready for use. The items not included in the hip pack are three 1-foot antenna poles, one 6-inch antenna pole and the data collector cable (P/N 30233-00 for TDC1, P/N 30234 for TDC2, or P/N 30236 for Field Computer/MC-V). These are located inside the shipping case.

The large interior of the hip pack contains: the Pro XR or Pro XRS receiver, two camcorder batteries, the power/data cable, and the camcorder power cable. All of these are set up inside the pack and ready for use. The exterior pocket of the hip pack contains a 3-meter antenna cable attached to the receiver and routed through a passage between the large interior pocket and exterior pocket. Both the data collector cable and antenna are routed out of the exterior pocket through the double zipper.

4-20

Pro XR/XRS Receiver Manual

-----..... 79 ----1100 82.0 1111 1111 distant. --1122 - 12

4

_

4

Pro XR/XRS System Equipment

To route the data collector cable:

- Locate the data collector cable and connect it to the data power cable, DE-9 connector labeled TO RECEIVER.
- Once connected, feed the coiled cable through the passage and into the exterior pocket.

4.7.2 Wearing and Adjusting the Hip Pack

The Pro XR/XRS hip pack, once adjusted to suit, is comfortable and easy to use. See Figure 4-19.

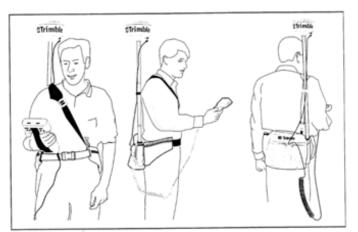


Figure 4-19 View of Hip Pack Setup

Pro XR/XRS Receiver Manual

Ante	nna
abov depe need	n wearing the hip pack, the antenna height should be 3-4 inches e your head. The number of antenna pole sections required varies nding on your height. For example, if you are 5'5" tall, you may two 1-foot and one 6-inch pole sections. If you are 6'2" tall, you need three 1-foot poles. Try out different pole heights.
To se	t up the antenna with the hip pack:
1.	Attach the pole sections together and connect the antenna onto the top of the pole sections.
2.	Attach the pole/antenna to the hip pack.
3.	Choose the side of your body that you prefer the antenna to be on and slide the pole sections into the small sleeve on that side of the hip pack.
Hip	Pack and Strap
To a	ljust the hip pack and strap:
1.	Connect the strap to the rear D-ring on the side of the pack on which the antenna is located.
2.	Connect the other end of the strap to the D-ring on the belt on the opposite of the bag.
3.	Slide the antenna pole through the velcro connection on the strap.
4.	Put the strap over your head and across your opposite shoulder.
	At this point, the shoulder strap should lead naturally from the antenna pole across your chest to the belt.
5.	Buckle the hip pack around your waist/hip area so that the belt buckle is centered in the middle of your body.
	The pack should adjust to fit close to the small of your back.

E

- Adjust the front and back straps so the shoulder strap is situated squarely on your shoulder.
- Put the pack on by slipping the strap over your head and across your body and then buckling the belt of the hip pack.

The hip pack includes side compression straps that can be pulled towards you to hold the pack firmly and comfortably against your back.

Remove the hip pack/strap by unbuckling the belt and slipping the strap over your head.

The hip pack and strap can also double as a shoulder bag. Tuck the belt portion of the pack into the webbing material on the back of the pack and hook the strap on the large D-rings of the pack. The unit can now be carried on your shoulder instead of around your waist.

The pack has extra room in the interior and exterior pockets for additional items you may need in the field. The hip pack also includes straps on the bottom of the pack to secure an extra sweater or coat while in the field.

4.8 Optional Range Poles and Tripods

Range poles and tripods are very useful when collecting carrier phase data. The height of the antenna can be accurately measured, and the antenna can be held still easily, compared to an antenna mounted from the hip pack.

Pro XR/XRS Receiver Manual

4-23

4

Monterey County Water Resources Agency EPA R9#03-238 X-97994701-0 2 August, 2007

APPENDIX B

FIELD DOCUMENTATION

Appendix B-1: Example of Field Sheet

Appendix B-2: Example of Chain of Custody Form (COC)

Appendix B-3: Example of Photo-Log

Appendix B-4: Example of Sample Labels

		18	5	12	LE	যাম	12	l in	12	1.1	_	13	3	10	١÷.
M June 2007	REMARKS	2:Arrigo Bost, RJP1. Tag #1154. Well in at corner of San Jon Rd at 9w9 183. Go twise then eall Ed Moon 206-9164 or Jesse Angros 90 9073. Say phone	'R. A. Bardin #12. Tag #10517, Well on Hitchcock Ref. off Blanco filter. Go twice, then call Doostic See phono.	ate Most. Sun Jon well B. Tag #1186. Call Chris. Three day notice theorem	charider. Domenic well: Tag #2960. Run for 20 mix to stabilize ordentrois, IIC = 2920 (bit '04). Call Ton Schweder 495-0924. 7	week notice. Take EC metror, a bucket and tast years results. See ph DSIP-6U/PP, Well 15A1. PCA side #13, Go twice, then call Bull or A fee above.	Sthetupte Well 15C2, Tag #2838, PCA site #19, Go twice, then bit to four fear show	to a reast, see proce- ligated Farms. More Cope #1. By hence and sheel Call Peter. 2 day once See photo.	ligath Pares. Controly Ranch well: Tag 82356. Call Peter Odello With an Charles 574-7416. See above. INACTIVE	APPENDED TO A CONTRACT AND A CONTRAC	Obstryet new press, invariants Down Packing, Vienta #1 Tag #1005. Call Bell or Jose Two day solitor. See photo.	ligado Fares. Moro Cojo #2. Big yellow truck-fill: Call Peter. 2 da 0004. See photo	revent Packing. Berords Schoothouse well. Tag. #1009. Call Bull suffram 2:14-46100 or fore Last Lepe V70-68209. Well next to constituent shed on McFaddon East, close to also schoot Two da	dew Davy aquifer well leased 54 mi W of Cooper #4.4. 27 mi S. di/Fadden #4 on the Nexee Bub.	Page 1 of
GRA1	ALC N	ĥĨ	1	M	T1			Ť	- 2.6			Ť.	ĥ		
VG PRO	SMPLE SMPLER TIME		Π	Π	Π	NV 00 53.6	8.55.00 AM					Π	Π	Π	
VITORIN	DATE				П	6/12/2007	6/12/2007					П	Π	Π	1
ER MON	APPT. DATE			Π	П								Π	Π	MONT
D WAT	VISIT DATE				Π								Π	Π	CLIENT CODE: WRA-MONT
GROUN															CLIENTO
ASTAL (SAPLE	ы	fault on house	Df	Df	Ы	DL	DL	DL	z	truck fill solve	z	ы	\square	
.УCO	PLANT No	\$00256	92428	52556	91285	15685		95209			95485	41056			
AGENC	NETER No.	45718.8	081749	(23653)	92593R	R49587	42542K	315358	918/418	02)54R	1843T	353884	932587		
MONTEREY COUNTY WATER RESOURCES AGENCY - COASTAL GROUND WATER MONITORING PROGRAM	MAN LEW	1418	TI NOCIWI	\$401 JON B		19951	11012	NORD CORDIN	CONTEA	MARKN.	10/0010	MORO CORONZ	SCHOOL HOUSER!	INCKS YARD	
ER RI	1SE	V0	ΡV	V0	9V	9V	W	QV	W	9V	94	8	ş	9	
(TVAT)	STATUS AQUIFER USE	P400	0814	611	0814	0074	P400	1400	P400	P400	P180	7400	P400	1301	
LINIO	STATUS	ACTINE	WINE	ACINE	CUPABI	001-0024	COP-01114	COPUSA	CSPARA	NRA	ACTING	CSPABA	ACTINE	ACTIVE	
EREY CO	SWID	145,028-24801	145/02E-34E01	145/020130401	148/02E-12N02	145.02E-154.03CSB-0236	145/02E-15C02 CSIP-50/14	145/126-15P10	e8.02E-16493	145/021-211001	145/026-229/02	145/02E-15500 CSP/08A	145-028-24P02	145/92E-281404	06, 2007
NOM	F CODE	888	100	613	\$1.6	1055	1324	198	#17	5179	766	839	1282	22929	Friday, July 06, 2007

https://cloudshare.elmontgomery.com/s/Cm8HHen2GXgbY5g#pdfviewer

ENVIRONMENTAL ANA' VSIS REQUEST FORM MONTEREV COUNTY CONSULD. ... D. CHEMISTRY LABORATORY 1270 NATIVIDAD ROAD, SALINAS, CALIFORNIA 2020K, BALLAGO, 2020 J.

5-4516	
13	
8	~
hone	onl
8	039
939	ratory
IFORNIA	laborat
S, CM	TOI
SALINAS	areas
ROAD,	Shaded
TIVIDAL	
-	

Chain of Custody:												
Collected by (Print & sign):	& sign):			Received by:				<u>م</u>	Date & Time:			
Relinquished by:				Received for Laboratory				-	Date & Time.			\square
Client Name:			Report Attention:				NV	ALVSES R	ANALYSES REQUESTED			
Address:			Copy to:				- 0					
City, State, Zip:			Phone:	Fax:			c					
Laboratory	Sample ID	Sam	Sample Site	Collection	Matrix ⁽¹⁾							
Number	or		or	Date &	1-Rewtine 2-Report	o. of intro olifon	.OMI itmu G-we olethi					
	System #	Desc	Description	Time	3-Replacement		р О М					
(1) D=Drinking V	Nater (Specify a	(1) D=Drinking Water (Specify as routine, repeat or replacement)		W=Wastewater (Specify as grab or composite)	or composite	_	O=Other (identify)	dentify)				
[] Payment received with delivery	ved with delivery	Amount		Sample comme	Sample comments (irregularities/preservation, billing information if different than reporting):	preserva	tion, billing info	mation if c	ifferent that	n reportin	K)	Γ

Initials: Dute:

Check: Receipt #:

15S/04E-07A01

Sampling Date:

Sampling Time: Comments:

Complete General Mineral Analyses

Complete General Mineral Analyses

15S/04E-19H03

15S/04E-15D02

Sampling Date:

Sampler:

Sampler:

Sampler:

Sampler:

Sampling Time: Comments:

Sampling Time: Comments: Complete General Mineral Analyses

15S/04E-20B02

Sampling Date:

Sampling Time:

Comments: Complete General Mineral Analyses

15S/04E-26G01

Sampling Date:

Sampling Time:

Comments: Complete General Mineral Analyses

Sampling Time:

Comments: Complete General Mineral Analyses

15S/04E-36H01

Comments:

Sampling Date:

Sampling Time:

Comments: Complete General Mineral Analyses

15S/04E-17P02

15S/04E-08M04

Sampling Date:

Sampling Date:

Sampler:

Sampler:

Sampler:

Sampler:

Sampling Date: Sampling Time:

Complete General Mineral Analyses

101/226

Monterey County Water Resources Agency EPA R9#03-238 X-97994701-0 2 August, 2007

APPENDIX C

REVIEW CHECKLISTS

Appendix C-1: Field Activities Review Checklist

Appendix C-2: Laboratory Data Review Checklist

Sampling Location(s):

Cam	-	in a	Date:
Sam	ιpι	ng.	Date.

Item	Yes	No	NA	Comment
All required information was entered into field sheets in ink, and sheets were signed and dated by the field sampler.				
Deviations from SOPs, along with any pertinent verbal approval authorizations and dates, were documented on the field sheets.				
Samples were collected at the correct sites.				
The correct number of samples for each type of analysis and the correct volume was collected (0.5 gal/ ~2L for complete mineral panel OR one pint/ ~0.5L for partial mineral panel).				
Acceptable sample containers, appropriate for the intended analysis, were used.				
Field blanks were collected, and at the correct frequency (one every 25 samples).				
Field duplicates were collected, and at the correct frequency (one every 25 samples).				
Samples were packed with double-bagged ice and transported at the proper temperature (4±2°C).				
Chain of custody (COC) documents were completed properly.				
Sample holding times were not exceeded during field operations. See Table 6 (QAPP).				
Reviewer's Name (print):				
Reviewer's Signature:				

Reviewer's Title:

Date of Review:

https://cloudshare.elmontgomery.com/s/Cm8HHen2GXgbY5g#pdfviewer

Sampling Location(s):

Sampling Date:

Item	Yes	No	NA	Comment
Samples arrived at the laboratory at the proper temperature (4±2°C).				
All requested analyses were performed and were documented in the analytical report.				
Analyses were performed according to the methods specified in the approved QA Project Plan.				
Holding times for extraction and analysis were not exceeded. See Table 6 (QAPP).				
Field Blanks results were below MDLs and were analyzed at a frequency of one every 25 samples.				
Field Duplicate results were ≤ 25% RPD and were analyzed at a frequency of one every 25 samples.				
Method detection limits were included in the report.				
A narrative summarizing the analyses and describing any analysis problems was included in the data report.				
Data qualifiers and flags were explained in the data report.				
Initial calibration data were within laboratory SOP defined acceptance criteria ($r^2 \ge 0.995$) for all analyses.				
Method blanks were performed at 3 per analytical batch, and were below MDL.				
Laboratory Control Sample (LCS) data were included for all analyses for every analytical batch.				
Laboratory Control Sample Results were within 80-120% recovery.				

		-		2 August, 2007
Item	Yes	No	NA	Comment
Analytical Duplicate data were included for all analyses for every analytical batch.				
Analytical Duplicate results were < 25% RPD.				
Matrix spike data were included for all pertinent analyses for every analytical batch, and recoveries were within 75-125%.				
Matrix spike additions were at 3-10x the native.				
Matrix spike duplicates were ≤ 25% RPD.				
Continuing calibration data were within QAPP defined acceptance criteria (80-120% of initial slope) for all analyses.				

Reviewer's Name (print):

Reviewer's Signature:

Reviewer's Title:

Date of Review:

Monterey County Water Resources Agency EPA R9#03-238 X-97994701-0 2 August, 2007

APPENDIX D

MONTEREY COUNTY CONSOLIDATED CHEMISTRY LABORATORY

QA MANUAL AND STANDARD OPERATING PROCEDURES

Appendix D-1: QA Manual Appendix D-2: Specific Conductance, based on SM 2510 B Appendix D-3: pH, based on SM 4500-H B Appendix D-4: Total Alkalinity, based on SM 2320 B Appendix D-5: Metals, based on SM 3111 B Appendix D-6: Anions, based on EPA 300.0

TABLE OF CONTENTS

ORGANIZATION AND RESPONSIBILITY
QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT OF DATA4
CUSTODY, HOLDING AND DISPOSAL OF SAMPLES
CALIBRATION PROCEDURES AND FREQUENCY8
ANALYTICAL PROCEDURES
ACQUISITION, REDUCTION AND VALIDATION OF REPORTING DATA11
INTERNAL QUALITY CONTROL CHECKS 12
PREVENTIVE MAINTENANCE
PERFORMANCE AND SYSTEM AUDITS
REFERENCES
APPENDICES

ORGANIZATION AND RESPONSIBILITY

On October 11, 1988, the Monterey County Board of Supervisors, in Resolution No. 88-508, authorized the Director of the County Health Department and the General Manager of Monterey County Flood Control and Water Conservation District (MCFC&WCD) to consolidate laboratory services for their respective programs into one facility. A Laboratory Steering Committee, comprised of representatives from both agencies, was established for the purpose of providing the planning, operation, and future development of the Consolidated Environmental Laboratory.

Each year the Steering Committee develops a Memorandum of Agreement (MOA) that describes and confirms the services to be provided by the Health Department to the Water Resources Agency (formerly the Flood Control and Water Conservation District) and defines the responsibilities of each party. In addition to providing laboratory support for the Health Department and the Water Resources Agency, the Consolidated Chemistry Laboratory provides analytical services to the Monterey Regional Water Pollution Control District, the County Department of Public Works and numerous water supply systems and wastewater treatment facilities.

The Consolidated Environmental Laboratory is accredited by the State Department of to perform tests in the following fields: 1) microbiology of drinking water and waste water; 2) inorganic chemistry and physical properties of drinking water; 3) analysis of toxic chemical elements in drinking water; 4) wastewater inorganic chemistry, nutrients and demand; and 5) toxic chemical elements in wastewater. A list of analyses and methods used in the laboratory is included in Appendix A.

The following is a brief description of the staff support for the Consolidated Chemistry Laboratory:

- Director Plans, organizes and controls laboratory operations. Coordinates laboratory interactions with other programs in the Health Department. Administers laboratory budget, billing and purchasing. Develops laboratory policy and procedures and supervises staff.
- Public Health Chemist Principal analyst. Performs complex organic and inorganic chemical analysis, evaluates and implements laboratory methods, develops and maintains quality assurance, reports results and maintains records, purchases equipment and supplies, provides technical consultation to Environmental Health and Water Resources Agency. Trains analysts and documents competency
- Water Quality Specialist- Performs broad range of professional scientific work related to water quality and environmental issues; is proficient in

Quality Assurance Manual Page 3 of 19

> performing water quality analyses and managing the laboratory water quality database. Interpret and explain regulatory guidelines to clients.

- Public Health Microbiologists Assist Public Health Chemist in performing microbiological analyses and performing quality control.
- Laboratory Assistant Prepares culture media and reagents, assists in the processing of specimens, performs low to moderately complex environmental analyses and clinical analyses where interpretation or medical judgement is not required.
- Laboratory Helper Washes and sterilizes glassware and supplies. Prepares and labels mailing containers and specimen collection kits. Accession laboratory specimens. Sterilizes and disposes infectious waste. Maintains stockroom.
- Typist-Clerk II Enters clients and laboratory results into computer. Prints reports/forms. Prepares billing statements; receives and accounts for payments. Distributes laboratory results, and maintains laboratory files.

QUALITY ASSURANCE OJECTIVES FOR MEASUREMENT OF DATA

Quality Assurance (QA) includes all aspects of laboratory operation that affect the accuracy and reliability of sample test results. In addition to quality control of the analytical test process, quality assurance practices include: 1) proper sample collection, receiving and holding, 2) proper maintenance of equipment, 3) accurate data reduction, validation and reporting; and, 4) periodic performance and systems audits.

CUSTODY, HOLDING AND DISPOSAL OF SAMPLES

Quality assurance includes proper labeling of samples, proper completion of the chain of custody/analysis request form, proper collection, preservation and storage of samples, proper accessioning of samples, and proper disposal of the sample.

- Sample Collection/Labeling. Sample collection is a coordinated effort between the client and the laboratory. The laboratory will provide clients with appropriate sample containers and sample collection/preservation instructions. The laboratory will also request duplicates and blanks according to client's sample plan requirements. All samples submitted for testing should be appropriately labeled. Sample containers provided by our laboratory have a suitable label which should be filled out at the time of sampling by the sample collector. The following information must be provided with all samples:
 - a) Sample identification submitters identification of sample (e.g. well number)
 - b) Location an address or brief description of the place the sample was taken.
 - c) Time and date taken.
 - d) Name of sample collector.
 - e) Any preservatives
- 2) Chain of Custody/Analysis Request Form. A Chain of Custody/Analysis Request form should accompany all samples (see Appendix B). The Chain of Custody/Analysis Request form must include the following information: submitter name and address; sample identification; location of sample collection; date & time of collection; sample type; analysis to be performed; signatures of persons involved in the collection and chain of possession; and inclusive dates of possession.
- Sample Receiving. Laboratory personnel receiving samples should assure that samples are properly collected, labeled, and the Custody/Analysis Request form has been completed:
 - a) The laboratory assistant receiving the specimen must sign and date the Custody/Analysis Request form. Make sure that any special requests made by the client are recorded under the comments section of the form
 - b) Assign each sample a unique laboratory identification number. Place

preprinted lab number on analysis request form and sample container. When a sample is collected in multiple containers for different analyses, each container should receive the same laboratory number. (Exception: sample containers for analytes requiring a rapid turnaround time (e.g. coliforms) may receive separate number to expedite reporting).

- c) Check that the samples meet the criteria described in Table 1006:I Summary of Special Sampling or Handling Requirements in 18th ed. of Standard Methods for the Examination of Water and Wastewater (Appendix C)
 - Samples should be collected in a suitable container; samples collected in bottles of unknown origin or questionable cleanliness should be brought to the attention of the Water Quality Specialist or the Public Health Chemist.
 - ii) Samples should be adequately labeled
 - iii) Samples should be checked for proper preservative, holding time, and holding temperature.
 - iv) Samples should be adequately sealed. Notify public health chemist if there is evidence of leakage. Verify that adequate sample volume exists to perform requested analysis.
- d) NOTE: Samples that are not properly identified or are otherwise unsuitable for testing (e.g. improperly preserved or exceeding holding/ transport time) are recorded on the "Sample Invalidation Log" and the Water Quality Specialist or Public Health Chemist notifies the client. Samples not meeting collection/preservation criteria may be tested only if resampling is impossible; results from such samples must be qualified on the laboratory report by comments describing sample deficiency.
- 4) When the sample meets criteria for acceptance by the laboratory, required preservatives are added immediately and the sample is stored under conditions specified by the analytical method to be used. For samples requiring thermal preservation, a laboratory refrigerator and freezer is available. The temperature is maintained at 4 degrees and below -10°C respectively. Temperatures are monitored each day.
- 5) Chain of Custody/Analysis Request forms are given to the clerk to enter into a password protected computer laboratory information management system. Refer to "Water Sample Entry" in Clerical Manual for instructions on sample log-in.
- 6) Disposal of samples: Upon completion of all analyses, any remaining

Quality Assurance Manual Page 7 of 19

> sample will be stored for at least one month prior to disposal. Chain-of-Custody form, worksheets and lab reports are retained for three years. NOTE: Longer retention of samples or data may be required when legal action is probable. The samples and any associated extracts or digests are disposed of following recommendations found in the book, *Prudent Practices for Disposal of Chemicals from Laboratories*, National Academy Press, Washington, D.C. 1983.

CALIBRATION PROCEDURES AND FREQUENCY

Calibration is the process for determining the correctness of the assigned values of the physical standards used or the scales of the measuring instruments. Calibration accuracy is critically dependent on the reliability of the standards used for the required comparisons. Only the highest quality chemicals are used to provide necessary standard solutions, and due care is exercised in their preparation. The concentrations of the calibration standards bracket the expected concentration of the analyte in the samples. No data is reported beyond the range of calibration of the methodology. The calibration data, when plotted graphically, is referred to as a calibration curve. The calibration must be done under the same instrumental and chemical conditions as those that will exist during the measurement process. The frequency of calibration depends on the accuracy requirements of the investigation and the stability of the instrument used for the measurements:

At a minimum, three different dilutions of the standard will be measured when an analysis is initiated. Correlation coefficient must be > 0.995. Reportable analytical results are those within the range of the standard dilutions used. Do not report values above the highest standard. The lowest reportable value is the Method Detection Limit (MDL), providing that the lowest calibration standard is less than 10 times the MDL.

- Atomic Absorption Spectrophotometers Two approaches are used to calibrate atomic absorption spectrophotometers. These methods are direct comparison and standard additions.
 - a) Direct comparison is the simple approach, and can be used with many instruments to give a direct readout of the concentration of an element in an unknown sample. To obtain good precision (e.g., 1-2% coefficient of variation), the absorbance levels measured must be about 0.1 to 0.6 units. Standard and sample solutions should be similar in bulk matrix constituents, particularly acid and salt content. Interference suppressants are used in all solutions when required. A number of standards (usually three to five in increasing concentration) as well as a blank, are prepared to cover the concentration range. A volume of type II reagent water with the same amounts of acids as the samples and standards) will be used for calibration blank. These solutions are run in absorbance to check linearity of the calibration curve.
 - b) The method of standard additions is used when samples contains severe matrix interference. In this case it is possible to add small amounts of conventional standard solutions, in increasing amounts, to aliquots of each sample. A calibration graph can then be constructed. This method will often be used in work with the graphite furnace.

Quality Assurance Manual Page 9 of 19

- 2) UV-VIS Spectrophotometer The calibration procedure for the UV-VIS spectrophotometer is similar to that for the A.A. spectrophotometers. An integration interval is not required as the signal is very stable. It is important to use blanks and allow at least 1/2 hour warm up time.
- 3) PH Meters The proper calibration of pH meters requires the use of two buffer solutions and a thermometer. The two buffer solutions must cover the expected range of samples to be tested. A third buffer is used to confirm calibration. The pH meter should be calibrated each day. The temperature of the buffers must be entered into the meter.
- 4) Conductivity Meter The conductivity meter does not require frequent calibration but should be checked against a known standard each day of use. Recalibrate when there is significant deviation with the value of the standard.
- 5) Ion Chromatograph- Calibration of the Ion Chromatograph is performed at least once each year and whenever: 1) Controls are out of range; or, 2) the column, suppressor or detector is changed.
- 6) Inductively Coupled Plasma/Mass Spectrometer Calibration of the ICP-MS is performed every day of analysis and whenever controls are out of range. See the SOP for more information.

ANALYTICAL PROCEDURES

The laboratory employs only methods approved by Environmental Laboratory Accreditation Program. Analysts must conduct sufficient preliminary tests using the methodology and typical samples to demonstrate competence in the use of the measurement procedure.

Each time an analytical procedure is performed controls are included and duplicate samples and known additions are tested to insure accuracy and precision. Results are not reported unless all controls are within acceptance limits referenced in Standard Methods 18th Edition, 1992.

To monitor reliability of analytical measurements, data is periodically obtained on detection limits, accuracy, precision and recovery.

ACQUISITION, REDUCTION, VALIDATION OF REPORTING DATA

The analytical chemist is responsible for describing and reporting the data in an appropriate manner. In order to insure the accurate transcription, calculation and reporting of analytical data, the chemist will adhere to the following quality assurance procedures.

- Use documented procedures and record all significant experimental details in such a way that the measurements could be reproduced by a competent analyst at a later date.
- All measurements are made so that results are representative of the matrix (soil, water, etc.) and conditions being measured.
- Report data only to the number of significant figures consistent with their limits of uncertainty.
- 4) Report data with the proper units of concentration. Units should be chosen which clearly indicate whether the concentration is in terms of weight by weight, weight by volume or volume by volume. Unless otherwise specified, all data are calculated and reported in standard units to allow comparison with data reported by other laboratories.
- 5) The analytical methodology used will be cited. The raw data for each sample, along with reagent blanks, control, and spiked samples will be suitably identified if included in the report. If average values are reported, an expression of the precision, including the number of measurements, must be included.
- 6) The report should include date and place of sampling, sampling point, the name of the sample collector, identification as to type of sample, date and time of submittal to the lab, date of analysis, name of the analyst, and the result. Any conditions which may effect the interpretation of the data should be noted in the report. All results will be reviewed by a Water Quality Specialist or Public Health Chemist before a final report is released.
- 7) Laboratory records will be retained in a permanent file for three years.
- Retain samples for one month after issuing final report and retain data and documentary evidence for three years.

INTERNAL QUALITY CONTROL

Quality Control (QC) may be defined as those measures undertaken in the laboratory to maintain the analytical testing process within acceptable limits of accuracy and precision.

The Quality Control Program consists of the following elements: documentation of operator competence, recovery of known additions, analysis of externally supplied standards, analysis of method blanks, and testing of replicate samples:

- Operator competence The principal analyst is responsible for: 1) developing a standardized training syllabus for the methods employed in the laboratory; 2) assuring that test personnel are adequately trained; 3) assessing the competency of test personnel, and 4) maintaining documentation of training and competency of all test personnel.
 - a) Before test personnel are permitted to do reportable work, competency in performing the analysis is to be demonstrated. Commonly, the analyst performs replicate analysis under the supervision of the principal analyst. General limits for acceptable work are found in Standard Methods 18th Edition, 1992 in Table 1020 :I.
 - b) After initial demonstration of competency, the principal analyst will assure test personnel maintain competency through testing internal or external proficiency test samples at least once each year.
- With each batch of samples tested, controls will be tested to verify the accuracy of results as described below. Controls used with each method are outlined in Appendix D.
 - a) Recovery of known additions as part of all regular analytical protocols except titrimetric and gravimetric methods. Use known additions to verify the absence of matrix effects. Spiked samples shall be analyzed with a minimum frequency of ten percent of the samples per matrix per batch of samples. Spike recovery must be between 80-120% for potable water (75-125% for waste water). When a spike sample fails to meet this criteria, retest all samples following the last acceptable spike sample. Spike recovery calculated as % of the known addition recovered.
 - b) Analyze control standards with a minimum frequency of ten percent of the samples per matrix, per batch of samples. If there are less than 10 samples in a batch, at least one per matrix per batch must be analyzed. The concentration of the sample shall be within the working range of the method. Sources of these samples include but are not limited to: performance evaluation samples from the EPA, commercially available standards, or standards prepared in-house but from sources different

from calibration standard. Control standards must be within the published acceptance range (for external controls). If the control standard does not have a published acceptance range, recovery of the control should be within 10% of the known value. When a control standard fails to meet this criteria, retest all samples following the last acceptable control.

- c) Method blanks will be analyzed with each batch of samples. The use of method blanks provides a measurement of laboratory contamination. Blanks cannot exceed the minimum detection level. See Appendix A.
- d) Replicate samples will be analyzed with a minimum frequency of ten percent of samples per matrix, per batch of samples for drinking water. For wastewater the requirement is 5%. If there are less than ten samples per batch, at least one sample per matrix per batch must be analyzed. If the analyte is not detected, replicate matrix spike samples will be analyzed. The percent difference between replicate samples must be within 20% for potable water (25% for wastewater). When a replicate sample fails to meet this criteria, retest all samples following the last acceptable replicates. Duplicate % difference calculated as the difference as a percent of the mean. [100(X1-X2)/avg].
- e) In addition to the control standards tested with each run, an external reference standard for each analyte will be tested at least once each quarter.

All of the quality assurance control procedures will be followed in the laboratory. All documentation for these checks should be available for inspection by laboratory management.

Quality Assurance Manual Page 14 of 19

PREVENTIVE MAINTENANCE

As part of the QA plan, the laboratory has a comprehensive preventive maintenance program. Balances, spectrophotometers, and other instruments undergo routine maintenance and accuracy checks by a manufacturer's representative or by laboratory personnel as described below. All preventive maintenance performed in-house is documented on preventive maintenance forms. Instrument s which undergo routine professional maintenance have labels affixed to indicate date of last servicing. Manufacturer's instructions and service manuals are readily accessible.

Adequate spare parts are kept on hand to perform routine maintenance and minimize downtime. The spectrophotometers have maintenance contracts that provide for immediate servicing in the event of malfunction. Equipment records documenting preventive maintenance and emergency servicing/repairs are kept for a minimum of three years.

- Thermometer/temperature-reading instruments: Accuracy of thermometers or recording instruments are checked annually against a certified National Bureau of Standards (NBS) thermometer or one traceable to NBS and conforming to NBS specifications. All thermometers a relabeled with date calibrated and correction factor.
- 2) Balance: Balance accuracy is verified each week using ASTM type 1 reference weights. Accuracy checks are documented on preventive maintenance chart. Balances are serviced and certified annually through a maintenance contract. Type 1 weights are re-certified at least every five years.
- 3) pH meter: pH meters are standardized with at least two NIST traceable standard buffers (pH 4.0, 7.0, or 10.0) and compensated for temperature before each series of tests. A third buffer is used to confirm calibration. Date buffer solutions when opened and discard buffer after expiration date on bottle. Buffers prepared from powders are replaced after four weeks.
- 4) Water deionization unit: Conductivity of the RO and Nanopure water is checked each month. A heterotrophic plate count on Nanopure water is also performed monthly. Filters are changed as indicated by conductivity readings and heterotrophic plate count. Records are maintained on preventive maintenance chart. Water is tested annually for bacteriologic quality and heavy metals.
- 5) Autoclave: Autoclave charts are used to document date, time, temperature and contents of each load. Chem-di indicators and heat sensitive tape are used with each load to identify materials that have been autoclaved; results are recorded on autoclave chart. Autoclave performance is

checked each month with biological indicator (e.g. spore suspension). Autoclaves are serviced quarterly under maintenance contract. The accuracy of autoclave recording thermometer is checked annually. The autoclave operating temperature is monitored on a weekly basis.

- Refrigerator: Temperatures are recorded daily and units defrosted and cleaned as needed. All media and reagents stored in the refrigerator are labeled.
- Freezer: Temperatures are recorded daily. Identify and date materials stored. Defrost and clean semiannually; discard outdated materials.
- 8) Ultraviolet sterilization lamps: Unit is cleaned monthly by wiping lamps with a soft cloth moistened with ethanol. Test lamps quarterly with UV light meter and replace if they emit less than 70 % of initial output or if agar spread plates containing 200 to 250 microorganisms, exposed to the light for 2 minutes, do not show a count reduction of 99%.
- Water bath: Fecal coliform water bath is checked twice daily. All other water baths are checked each day of use.
- 10) Incubator: Check and record temperature twice daily (morning and afternoon) on the shelf areas in use. Locate incubator where room temperature is in the range of 16 to 270 C.
- Fume hoods/Biological Safety Cabinets: Fume hoods are checked once each month using a velometer; readings are recorded on preventive maintenance chart. Hoods and safety cabinets are certified annually through service contract.

PERFORMANCE AND SYSTEMS AUDITS

Corrective action is required when data is outside of predetermined limits for acceptability. The corrective actions can be triggered by the following quality assessment activities: Control Chart analysis; proficiency evaluation testing; and QA audits.

1) CONTROL CHART ANALYSIS:

The laboratory's quality assessment techniques will be used to maintain the precision and accuracy of all laboratory analyses within a state of statistical control. Precision and accuracy measurements are the best way to assess analytical performance. Precision is the degree of reproducibility of a particular analytical procedure. Accuracy is a measure of the agreement between an experimental determination and the true value.

 a) PRECISION - Assess precision by replicate analysis, by repeated analysis of a stable standard, or by analysis of known additions to samples.
 Precision is specified by the standard deviation of the results. The formula for determining standard deviation (SD) is:

$SD = \sqrt{\Sigma} (X1 - X)^2 / (N - 1)$

X1 is the value of the individual measurements; X is the mean of all measurements for a given sample and N is the number of measurements.

The purpose of determining precision is to establish the typical variance of the method in the absence of any matrix influence. In the course of determining precision, there are two cases that indicate there is a problem with the precision data:

- The measured values show wide variation from one to another for a given day.
- ii) The measured values show little variance from one to another for a given day, but the mean and standard deviation show wide variation from one day to another.

If either of the above occurs, factors such as sample homogeneity, instrument calibration, or analyst error should be checked, documented, and corrected. The precision measurements should then be repeated.

b) ACCURACY - The best method to determine accuracy is to spike an alequot of reagent water with a known amount of the constituent being measured and analyze the sample. The amount spiked should be at least five to ten times greater than the analytical detection limit. To evaluate the data accuracy, the percent recovery of the spike must be determined. The formula for determining percent recovery is:

% recovery = [100(S - S1)+S2]

Where S is the concentration of the spiked sample; S1 is the concentration of the unspiked sample; S2 is the concentration of the spike added to the sample.

If the percent recovery deviates significantly from 100% and the method has not demonstrated significant bias, the problem must be detected and corrected prior to continuing the analysis. Sources of this problem include incorrect standard or spike solution concentration or a problem in the procedural detection system.

Precision, accuracy, and detection limits for all methods used in the laboratory is comparable to values referenced in Standard Methods 18th Edition, 1992 and EPA Methods for Chemical Analysis of Water and Wastes, March 1983.

- 2) PERFORMANCE EVALUATION SAMPLES: The laboratory director is responsible for enrolling the laboratory in ELAP approved proficiency testing program(s) and assuring that proficiency testing is performed for all regulated tests. The principal analyst (Public Health Chemist) will conduct and document internal proficiency testing at least once a year for tests where proficiency testing is not available. Proficiency test samples are treated in the same manner as routine samples (ie. tested the same number of times, tested using personnel who routinely perform testing, tested using routine methods and tested during patient testing).
- 3) QUALITY ASSURANCE AUDIT: The quality assurance program will be audited quarterly and any deviations from the program will signal corrective action to be taken. Quality assurance audit will be documented in a written report. The audit will include the following aspect:
 - Competency of test personnel must be evaluated annually and be documented
 - b) Evidence of the systematic use of control samples, replicate measurements and reference materials all in conjunction with control charts.
 - c) Proper labeling of reagents and samples.
 - d) Use of approved methods.

- e) Results on blind samples.
- f) Acceptable safety equipment and procedures.
- g) Quality assurance reports generated on a regular basis.
- h) Documentation on equipment performance and maintenance.
- i) Training records.
- j) All relevant files accessible and organized.
- k) Laboratory personnel following good laboratory practices.
- l) Laboratory personnel following good measurement practices

The Public Health Chemist will be responsible for initiating and documenting any corrective action necessary. Corrective action will be documented on the appropriate control chart, performance evaluation report, or QA audit report. No data shall be reported until the cause of the problem is located and corrected or the laboratory demonstrates the cause was a random event and no longer affects data. Although the elimination of events requiring corrective action may not be achieved, a reduction in the repetition of these events is the objective of this program. REFERENCES FOR QUALITY ASSURANCE DOCUMENT

- Standard Method for the Examination of Water and Wastewater, 18th edition, 1992.
- Handbook for Analytical Quality Control in Water and Wastewater Laboratories. EPA-600/4-79-019, March 1979, USEPA.
- Manuals for the Certification of Laboratories Analyzing Drinking Water Criteria and Procedures/Quality Assurance. EPA QAMS-005/80, Interim Guidelines, EPA-570/9-82-009, USEPA.
- Methods for Chemical Analysis for Water and Waste. EPA-600/4-79-020, March 1983.

Written by: Gerry Guibert & David Holland

Date: May 1993

Revised: January 1999 Revised: September 21, 2004

Approved by:

(Laboratory Director's Signature)

Monterey County Consolidated Chemistry Laboratory

ANALYTICAL METHODS FOR WATER ANALYSIS

PARAMETER	HOLD TIMES	METHOD REFERENCE	MDL	UNITS
Free Chlorine	.25 h; ASAP	SM 4500-Cl G	0.02	mg/L
Total Chlorine	.25 h; ASAP	SM 4500-Cl G	0.05	mg/L
Enterococcus	8 h	IDEXX	1/100 ml	
Heterotrophic Plate Count	8 h	SM 9215 B	1	CFU
E. coli – MPN	6 h waste 8 h source 30 h potable	SM 9221 B	2/100 ml	
Fecal Coliform - MPN	6 h waste 8 h source 30 h potable	SM 9221 B	1/100 ml	
Total Coliform - MPN	6 h waste 8 h source 30 h potable	SM 9221 B	2/100 ml	
Total Coliform – Quantitray	6 h waste 8 h source 30 h potable	SM 9223	1/100 ml	
E. coli – Presence/Absence	30 h potable	SM 9223	1/100 ml	
Total Coliform - P/A	30 h potable	SM 9223	1/100 ml	
pH	.25 h; ASAP	SM4500H B		pH units
Bicarbonate	ASAP (with pH)	SM 2320 B	10	mg/L
Calcium Carbonate	ASAP (with pH)	SM 2320 B	1	mg/L
Carbonate	ASAP (with pH)	SM 2320 B	1	mg/L
Solids	24 h	SM 2540 F	0.1	mL/L
Color Determination	48 h	SM 2120 B	2	CU
Odor	NS; 48 h (rec 6h)	SM 2150 B	1	TON
Turbidity	48 h	SM 2130 B	0.05	NTU
Nitrate	48 h	EPA 300.0	1	mg/L
Nitrite as (N)	48 h	SM 4500 NO2-B	10	ug/L
Total Dissolved Solids	7 d	SM 2540 C	5	mg/L
Total Suspended Solids	7 d	SM 2540 D	5	mg/L
Alkalinity	14 d	SM 2320 B	1.0	mg/L, CaCO3
Bromide	28 d	EPA 300.0	1	mg/L
Chloride	28 d	EPA 300.0	1	mg/L
Fluoride	28 d	EPA 300.0	0.02	mg/L
Sulfate	28 d	EPA 300.0	1	mg/L
Conductivity	28 d	SM 2510 B	1	umhos at 25C
Ammonia (N)	28 d	SM 4500 NH3 F	0.05	mg/L
Orthophosphate	NS; 28 d	SM 4500 P E	0.03	mg/L
Total Phosphorus	28 d	SM 4500 P E	0.03	mg/L

Page 1 of 2

Monterey County Consolidated Chemistry Laboratory

PARAMETER	HOLD TIMES	METHOD	MDL	UNITS
		REFERENCE		
Aluminum	6 months	EPA 200.8	5	ug/L
Antimony	6 months	EPA 200.8	0.5	ug/L
Arsenic	6 months	EPA 200.8	1	ug/L
Barium	6 months	EPA 200.8	0.5	ug/L
Beryllium	6 months	EPA 200.8	0.5	ug/L
Cadmium	6 months	EPA 200.8	0.5	ug/L
Chromium	6 months	EPA 200.8	5	ug/L
Copper	6 months	EPA 200.8	0.5	ug/L
Iron	6 months	SM 3111B	100	ug/L
Lead	6 months	EPA 200.8	0.5	ug/L
Manganese	6 months	EPA 200.8	0.5	ug/L
Mercury	6 months	EPA 200.8	0.25	ug/L
Nickel	6 months	EPA 200.8	0.5	ug/L
Selenium	6 months	EPA 200.8	5	ug/L
Silver	6 months	EPA 200.8	5	ug/L
Thallium	6 months	EPA 200.8	0.5	ug/L
Zinc	6 months	EPA 200.8	5	ug/L
Calcium	6 months	SM 3111B	1.0	mg/L
Magnesium	6 months	SM 3111B	0.1	mg/L
Potassium	6 months	SM 3111B	0.1	mg/L
Sodium	6 months	SM 3111B	0.1	mg/L
Hardness as CaCO3	6 months	SM 2340 B	1.0	mg/L
Boron	6 months	SM 4500 B B	0.1	mg/L

Page 2 of 2

Appen B	° 8	ENVIRONMENTAL ANA' VSIS REQUEST FORM MONTERFY COUNTY CONSOLIT D. D. THEMETRY LABORATORY 1270 NATIVEDAD ROAD; SALINAS, CAORNIA 93906 Phone (831) 755-4516	MENTAL AN/ UNTY CONSOLIT AD, SALINAS, CA	DCHEMIST DCHEMIST DCHEMIST	JEST FORM RYLABORAT 6 Phone (831)	4 0RY 755-451			<i>i</i>	
		Sha	Shaded areas for laboratory use only	laboratory 1	ise only					
Chain of Custody:										
Collected by (Print & sign)	& sign):		Recei	Received by:				Date & Time.	¥	
Relinquished by:			Recei	Received for Laboratory.				Date & Time	ĸ	\square
Client Name:		Repert Attention	inter :				ATIVNY	AVALYSES REQUESTED	8	
Address.		Copy to:				\vdash	0.	-		
City, State, Zip:		Pfsone:		Fax			Cr			
Laboratory	Sample ID	Sample Site		Collection	Matrix ⁽¹⁾		0			
Number	or	or		Date &	1-Rewine 2-Repeat	lo. of intro. olifo:	.OMb. itmus/ Cl-wo. ottatio			
	System #	Description		Time	3-Replacement	_				
						-				
(1) D=Drinking V	Water (Specify as n	(1) D=Drinking Water (Specify as routine, repeat or replacement)	W=Wastewater	W=Wastewater (Specify as grab or composite)	or composite		O=Other (identify)	tify)]
 Payment received with delivery Check: 	ved with delivery	Amount Initials		Sample comme	ats (irregularities	preservati	cample comments (incgularities/preservation, billing information if different than reporting)	on if different th	um reporting):	
Receipt #:		Date:								

SPECIFIC CONDUCTANCE EPA 120.1/SM 2510 B umhos at 25°C

Scope and Application:

This method is applicable to drinking, surface and saline waters, domestic and industrial wastes and acid rain.

Summary of Method:

The specific conductance of a sample is measured by use of a self-contained conductivity meter, the YSI Model 32. The conductivity meter is used in the temperature compensated mode.

Sample Criteria & Acceptability:

A minimum of 100 ml sample should be submitted in a clean container provided by the laboratory. Samples can be stored for up to 28 days at 4oC. The samples must be brought to room temperature before testing. If the sample does not meet the above criteria, document it on the worksheet but perform the test.

Reagents:

0.02 Molar Standard Potassium Chloride Solution:

- Dry 0.85 g of Reagent Grade Potassium Chloride (KCl) for 4 hours at 105°C. Use immediately or store in a desiccator until use.
- Dissolve 0.7456g of pre-dried potassium chloride in a 1 liter Class A volumetric flask using deionized water.
- Label the flask with Potassium Standard Solution, 0.7456 g KCl/L, date made, outdate of 3 months, and initial.
- Alternately, order two 500 ml containers of the Traceable Conductivity Calibration Standard near the 1414 micromho/cm range; from Fisher Scientific, Cat No. 09-328-11.

Control

- Check deionized water. It should read less than 1 umho. If the reading is higher, clean cell
 and repeat reading of deionized water. If reading is still high, notify the Chemist.
- Use current Quality Control sample with each run. The control must be in range before proceeding with specimens. The 0.01 M KCl can be used as control.

Conductance Meter Maintenance:

- Store cell in deionized water. If the cell has been stored dry, soak in deionized water for 24 hours.
- Check the platinum black coating on the electrode. If the coating appears thin or if it is flaking off the electrode, the cell should be cleaned and the electrodes replatinized. See "Instruction Manual YSI Model 32 Conductance Meter" pages 11 and 12 for instructions.
- The electrode should be cleaned and replatinized every four months. Record the preventative maintenance on the "PM Worksheet".

Instrument must be standardized with KCl solution before daily use.

- Pour 50 ml of the standard potassium chloride solution into a 250 ml beaker. Alternately, immerse the conductivity cell and thermometer in the Rinse Bottle, then transfer to the Read Bottle for actual reading
- Immerse conductivity cell in sample. The electrodes must be submerged and the electrode chamber must be free of trapped air. Tap the cell to remove any bubbles, and dip it two or three times to assure proper wetting.
- 3. Rotate the Range Switch to the lowest range position that gives a reading (within range) on the display. An over-range value is indicated by a "1" followed by blanks. An under-range value is indicated by a reading followed by a small letter "u". Readings may be in error when operating in the under range conditions. On the 0.1 – 2 micromho range; allow extra time to stabilize.
- The conductance value of the solution is displayed on the meter. The units in which it is to be read are determined by the Range Switch, either in mU or in uU (or milli and micro siemens).

2 uU, 20 uU, 200	uU reading = final result
2 mU, 20 mU, 200 mU	readings x 1000 = final result

5. Use the table below to check accuracy of cell constant:

Conductiv	ity of 0.01 M KCI
Temperature in Centigrade	Micro-omhos/cm
21	1305
22	1332
23	1359
24	1386
25	1413
26	1441
27	1468
28	1496

If the standard is within range, rinse the cell three times with deionized water, and start testing unknowns as described in steps 2-4.

Reporting:

Report results to three significant figures. Report in units of micromhos per centimeter at 25 °C

References:

- 1. Instruction Manual YSI Model 32 Conductance Meter", Item 060818, PN A32018 R, October 88 EP
- 2. Methods for Chemical Analysis of Water and Wastes", EPA- 600: 4-79-020, March 1983, pages
- 120.1-1 to 120.1-3.
- 3. "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.

Written by: David Perez, Date: February 1993 Revised: January 12, 2007

Approved by:_

Chemist

pH SM 4500-H B Electrometric

Scope and Application

Application to drinking, surface, ground and saline waters as well as acid rain, and wastewater (domestic and industrial.

Principle of Operation

pH is defined as the negative logarithm of the hydrogen ion concentration in moles per liter. The pH scale goes from zero to fourteen with a value of seven units to be considered neutral. Values below seven are acid; values above seven are basic. It is important to note that a one-unit change in pH represents a ten-fold change in the concentration of the hydrogen ion.

pH has a great impact on almost all biological and chemical processes used for water and wastewater treatment, and proper measurement of this value is critical. pH is measured using a pH meter consisting of a potentiometer, glass pH electrode, reference electrode and temperature compensating device. When calibrating the instrument, use two buffers that bracket the expected pH value for greatest accuracy.

Specimen collection and Handling

Collect sample in plastic or glass container. Test sample immediately upon receiving and/or within two hours after collection.

Instrument Calibration:

Two buffer calibration:

- Fill a 50 ml beaker with up to 30 ml of pH 7 buffer. Add a stir bar and set the knob on the magnetic stirrer to the second line on the dial (slow spin). Place the electrode in the pH 7 buffer; make sure that the reference electrode is filled with KCl and is open. Allow the electrode to equilibrate for 5 minutes.
- Release Standby button and press the pH button. Measure the temperature of the buffer solution and set the temperature control. Turn the large slope knob to 100 and the inner know fully clockwise.
- Adjust the calibration control until the readout displays 7.00. Press the mv button and record the mv reading on the worksheet. Remove electrodes from the buffer and rinse with deionized water.
- 4. Fill a 50 ml beaker with up to 30 ml of pH 4 buffer. Add a stir bar and set the knob n the magnetic stirrer to the second line on the dial (slow spin). Place the electrode in the pH 4 buffer and allow the electrode to equilibrate for 5 minutes. Press the pH button.
- Adjust the slope knob until the readout displays 4.00. Press the mv button and record the mv reading on the worksheet. Remove electrodes from the buffer and rinse with deionized water.
- 6. Fill a 50 ml beaker with up to 30 ml of pH 6.86 buffer. Add a stir bar and set the knob n the magnetic stirrer to the second line on the dial (slow spin). Place the electrode in the pH 6.86 buffer and allow the electrode to equilibrate for 5 minutes. Press the pH button and record the result on the worksheet and quality control graph. PH should be 6.86 ± 0.1; notify chemist if out of range.
- 7. Rinse the electrodes with deionized water.

- 8. Record mv readings of calibration buffers. Calculate change in millivolts and divide by 3. The result should be 58 ± 2 mv.
- If the slope is within limits, begin testing unknowns. If the slope is out of range, re-calibrate the pH
 meter. If the second calibration slope is out of range, notify the chemist.

Controls

- 1. Run every tenth specimen in duplicate. The duplicates should be within 20% of each other.
- Check the 6.86 control buffer after every tenth specimen. Record the results on the worksheet and quality control chart.

Procedure

- Once the pH meter has been calibrated, the unknown samples can be tested.
- Pour 30 ml of unknown (or 50 ml of unknown if also testing for alkalinity) into a 150 ml beaker containing a small stir bar. Start the stirrer. Keep the automatic stirrer at a constant moderate rate (The speed is marked on the dial by a pen marking).
- 2. Allow the display to stabilize, and record the results on the worksheet.
- Rinse the electrode with deionized water between specimens. Blot dry with a 'kimwipe'. Do not rub the electrode; the static electricity can alter readings.

Reporting

Report the result to the nearest tenth (0.1).

References:

- 1. "Method for Chemical analysis of Water and Wastes", EPA 600/4-79-020, Revised March 1983.
- 2. Standard Methods for the Examination of Water and Wastewater 18th edition 1992

Written by: David Perez Date: December 1994

Approved by:

Chemist

Total Alkalinity SM 2320 B Titration

Principle

Total alkalinity is defined as the acid-neutralizing capability of water. It is reported as due to bicarbonate (HCO3), carbonate (CO3), and hydroxide (OH). Unaltered sample is titrated potentiometrically to pH 8.3 endpoint for "carbonate" alkalinity and 4.5 endpoint for "bicarbonate" alkalinity.

Note: Samples with a pH less than 8.3 (i.e. most drinking water samples) are reported as having non-detectable hydroxide and carbonate alkalinity; for these samples total alkalinity is due entirely to the bicarbonate content of the water. Bicarbonate alkalinity (as HCO3) can be calculated from total alkalinity (as CaCO3) by multiplying by a factor of 1.22.

Applicable to drinking and surface waters, domestic and industrial wastes, and saline waters.

Sample Criteria & Acceptability

Samples should be submitted in clean containers provided by the laboratory. A minimum of 100ml of sample should be submitted for testing. Samples, which cannot be tested within 24 hours of collection, should be stored at 4°C and tested within 14 days. If any sample does not meet the above criteria, document it on the worksheet but perform the test.

Equipment

- 1. pH meter that can read to 0.05 pH units.
- 2. Two 1,000 ml Class A volumetric flasks.
- 3. Magnetic stirrer and magnetic stir bars.
- 4. Two 100 mL beakers.
- 5. One 250 mL flask
- 6. One 50 mL graduated cylinder

Reagents

The day before preparing standardize sulfuric acid, dry 0.1 g of Tris Buffer for at least 3 hours at 103 C (overnight is acceptable). After drying, immediately weigh out the Tris buffer. If that is not possible, store the reagent in the desiccators until used.

1. Standardized 0.02 N H₂SO₄ (sulfuric acid) + 0.004 units:

The concentrated H2SO4 and stock 1.0 N H2SO4 may be found in acid cabinet below hood.

- a. Prepare a 1.0 N H H₂SO₄ Stock Solution: Fill a 1,000 ml Class A volumetric flask three quarters full with deionized water. Carefully add 28.0 mL of concentrated H₂SO₄ using a 25 mL and 3 mL Class A volumetric pipette. Fill to the mark with deionized water and mix. Transfer to plastic bottle and label as 1.0 N H₂SO₄ Stock Solution, date made, outdate of 1 year, and initial. Cap tightly.
- b. Prepare a standardized 0.02 N H₂SO₄.
 - Fill a 1,000 mL Class A volumetric flask three quarters full with deionized water. Carefully add 20.0 mL of the Stock H₂SO₄ using a 20 mL Class A pipette. Fill to mark and mix thoroughly.
 - Weigh out between 0.0700 to 0.0800 g of Tris buffer using the analytical balance. Record the weight of the Tris Buffer to four places in the "Standard & Reagent Preparation" notebook. Add the buffer to 250 mL flask containing 25 mL of deionized water and stir bar; mix.

MCHD Lab SOP - Alkalinity Page 2 of 3

- Add 3 drops of Hach Brom Cresol Green-Methyl Red indicator solution (Hach cat. number 451) to the Tris buffer solution.
- Fill the titrating buret with the 0.02 N H₂SO₄ solution. Titrate the solution until a stable pink color is reached. Record the volume of reagent used.
 Calculations:
 - Normality of H₂SO₄ = Wt of Tris Buffer (g) + (0.121137 g/meq Tris X mL of 0.02 N H₂SO₄ used) Example:
- 0.0879 g Tris Buffer + (0.121137 g/meq Tris X 35.7 ml H₂SO₄) = 0.0203 N H H₂SO₄
- Transfer the 0.02 N H₂SO₄ to a one liter plastic bottle. Record the normality on the bottle, date made, outdate of 3 months, and initial. Store at room temperature.
- Alternatively, order 0.02 N H₂SO₄, already prepared and standardized from a vendor such as Fisher Scientific. Record lot on QC worksheet.

Controls

- Run deionized water as blank. Value of blank should be less than 2 mg/L of calcium carbonate (approximately 0.1 mL of H₂SO₄).
- Use one quality control standard. This is a solution of sodium bicarbonate (100 mg/l). Run once with each set of samples and record results on control chart. Consult chemist if out of control situation exists.
- Run every 10th specimen in duplicate. Calculate the relative standard deviation (RSD) of the replicates using the following formula: RSD=SD + mean x 100. The RSD should be less than 10% If the replicates are outside of this range, repeat the specimen a third time. Check with the chemist for instructions.
- Each quarter an external reference sample is to be analyzed. In the case of results exceeding
 acceptance values, document corrective action. Place any corrective action records in proficiency file

Procedure:

If applicable, standardize the pH meter each day of use (see supplemental procedure). Record slope with offset on worksheet.

Run the blank and control first. If the control is within range (range found in the "QC Inorganic True Value" binder), run the samples. Repeat the control if it is out of range. Notify the chemist if the control is out of range a second time.

- Add 50 mL of control or sample to a 100 ml beaker containing a magnetic stir bar. Set magnetic stirrer at low speed.
- 2. Carefully lower pH probe into the solution. If the pH is above 8.3 consult principal analyst!
- Fill the titrating buret to the zero mark with the standardized H2SO4. Carefully add the H2SO4 to the sample until a pH of 4.5 ± 0.05 is reached.
- 4. Record the volume of H2SO4 added to the sample, to the nearest tenth, on the chemistry worksheet.

MCHD Lab SOP - Alkalinity Page 3 of 3

Rinse the pH electrode with deionized water. Measure out the next sample, refill the buret, and titrate the next specimen.

Calculations:

Use the following formula to calculate the alkalinity as mg/L of calcium carbonate. Exception: For alkalinity below 20 mg/L use low alkalinity calculation procedure (refer to SM2320B part 5)

 $\begin{array}{l} mg/L = (mL \ of \ H_2SO_4 \ - 0.1) \ X \ normality \ of \ H_2SO_4 \ X \ (50,000 \ + \ ml \ of \ sample) \\ \hline \underline{Example \ (for \ 50 \ ml \ sample):} \\ (28.6 \ mL \ - \ 0.1) \ X \ 0.02 \ X \ (50,000 \ + \ 50ml) = \ 570 \ mg/L \ of \ Calcium \ Carbonate \ or \end{array}$

(28.6 ml - 0.1 ml) X (20) = 570 mg/L of Calcium Carbonate

Reporting

Report in whole numbers; round off to 3 significant figures. Examples: 2,902.5 = 2,900; 1,125.9 = 1,130; 23.65 = 24

References

Standard Methods for the Examination of Water and Wastewater 18th edition 1992

Written by: David Perez Date: January 1993 Revised by: G. R. Guibert Date: August, 1998

Approved by:_

Principal Analyst

Varian Flame AA Procedure SM 3111B For Ca, Mg, Na, K and Fe

Principle:

In flame atomic absorption spectrometry, a sample is aspirated into a flame and atomized. A light beam is directed through the flame, into a monochrometer and into a detector that measures the amount of light absorbed. Because each metal has its own characteristic absorption wavelength, a source lamp composed of that element is used. The amount of energy absorbed in the flame is proportional to the concentration of the element in the sample.

Sample Collection/Handling:

Use metal free collection bottle to collect sample. Collect one liter of sample. Smaller volumes (not less than 200 ml) can be used if necessary. On collection, acidify samples to pH <2 with 1:1 nitric acid, usually 3ml per liter. If samples are not acidified at time of collection, add acid upon receipt in lab and hold for minimum of 16 hours before analysis.[40 CFR 141.23(K)].

Sample Preparation:

Samples containing particulate or organic material require pretreatment before analysis. Samples with a turbidity <1 NTU, no odor and single phase may be analyzed directly. Digest all other samples before determining total metals.

Digestion Procedure for total metals:

Drinking water samples with turbidity >1 NTU can be analyzed following digestion with nitric acid. See procedure SM 3030E (Nitric Acid Digestion). Wastewater samples are better digested using method SM 3030F part b (Nitric Acid-Hydrochloric Acid Digestion). Report as total recoverable metal.

Sample criteria:

Except as noted, specimens that do not meet the criteria below should be immediately reported as "no test" with an explanatory note:

- 1. Samples submitted in improper collection container.
 - Sample inadequately identified. (Sample has no identification, or cannot be matched to a laboratory request form).
 - 3. Sample quantity insufficient
 - 4. Sample container broken or leaked in transit.

Special Instructions:

All glassware and pipettes used in this procedure must be cleaned using glassware-cleaning procedure. See document in kitchen.

Reagents:

- 1. Nitric Acid (HNO3). Use high purity nitric acid 1+1.
- Lanthanum solution (1.11%): Dissolve 58.65 g lanthanum oxide in 250 ml of conc HCL. Add slowly
 with stirring until dissolved and dilute to about 900 ml. Allow to cool for a few hours then dilute to final
 1000 ml volume. Used for Ca, Mg, Na, and K analysis.
- Calcium solution: Dissolve 630 mg calcium carbonate, CACO3, in 50 ml of 1+5 HCL. If necessary, boil gently to obtain complete solution. Cool and dilute to 1000 mL with water. Used for Fe analysis.
- Standard Metal solutions: Standard metal solutions are prepared from 1000 mg/l AA or ICP-MS standards purchased from Ricca Chemical company, Spex Certiprep, LabChem, Fisher Scientific or VWR. A standard from EM scientific (ICP Multi-element Standard) is very convenient for calibration standards.
- 5. Deionized Water from Millipore system metal free water.

Instrument Set-up:

Use the Varian Spectra 300AA operating in the flame mode with Air Acetylene burner.

- Turn on exhaust hood. Switch is located in the corner by the Chemistry room refrigerator. Note: Turn
 switch until it clicks on. If you continue turning the switch after it clicks, the airflow will be reduced.
- Turn on "Acetylene" gas cylinder located outside in the "Safety Storage" shed. The correct door housing the tank is labeled "Acetylene". Pressure should be set at 8-9 PSI.
 - Note: The cylinder valve is opened by turning the handle only 1/4 turn counterclockwise. Replace cylinder when pressure in tank drops below 100 psi. This prevents acetone from entering instrument.
- 3. Check the Varian Spectra AA 300A unit to see if the burner is installed.
- Check to see if the cathode lamp required is in the correct socket position, and it is lined up in the "Operating Lamp"
 - Note: Lamps are stored in the top drawer located directly across from the GTA 96 Graphite Tube Atomizer (next to hood).
- Turn on the equipment in the following order (allow a 20 minute warm-up period): Note: If the computer is already on, turn it off.
 - Spectra AA 300A: switch located on lower right front of instrument.
 - b. IBM PC and Printer: Turn surge suppressor on (power supply); hit reset button.

Once the unit has been set-up, program the machine for testing by:

- 1. Start at the "C:" prompt. Press "M" and "Enter".
- 2. Press "Spectra Flame"
- 3. Press "Index" (F10). Enter number 10, "Sequence Selection", press "Enter" key.
- 4. Select element to be tested
- 5. Press "Sequence Control" (F6). Enter number of samples to be tested.
- 6. Press "Index" (F10), enter number 6, "Optimization", press "Enter" key.
- The Screen will display two signal bar graphs. Check the previous week worksheet for the "Photomultiplier voltage" reading.
- Maximize the lamp signal of the Cathode tube using the two thumbscrews located on the back of the lamp socket (see figure 5.8).
 - a. Watch the bar graph as you turn one thumbscrew. Once the value reaches .9 or greater press "Rescale" (F1).
 - b. Check the Photomutiplier Voltage display on the screen, after rescaling. If the voltage is higher than the preceding week, continue adjusting and rescaling until the proper voltage is reached. If you are unable to reach the proper voltage, try adjusting the second screw.
 - c. Note: Normally the voltage stays the same from week to week, but as the lamp nears the end of its usefulness, the voltage reading will go up. If a new lamp is installed, the starting voltage may be different than the previous lamp. Record millivolt reading on worksheet.
- After adjusting for maximum signal, hit "Rescale" (F1). The photomultiplier voltage will be displayed. If the reading matches the previous week, record the voltage on the new worksheet. If it is out of range, readjust lamps. If voltage is still out of range, notify Chemist.

- Press "Index" (F10) key and select "Standards" (number 7). Verify that the values of the standards are correct (see previous worksheet for standard values). To select a value to change, use the up and down arrows. Enter the correct value with the keyboard.
- Check to see that drain hose, located below the Spectra 300A, is inserted into the drain bottle. (empty after each use).
- 12. Press "Index" key, enter number 18 (Signal Graphics), and press "Enter".
- 13. Press "Shift" and "Instrument Zero" (F10).
- Light burner by pressing ignite button. Aspirate DI water for about 10 minutes. This will allow burner temperature to stabilize.

Standard and Sample Preparation:

Required sample preparation depends on the metal form being measured.

Procedure for Ca, Mg, Na, and K

- Label the 10 ml beakers with the standard value; label the sample beakers with the last three numbers of the tiny tab number. Using the adjustable pipette, pipette 1.0 ml of sample or standard into each disposable beakers.
- 2. Add 9.0 ml of 1.11% lanthanum to each sample or standard using the adjustable pipette.
- Repeat the process once again by diluting 1 ml of the diluted sample to 10 ml with the 1.11% Lanthanum. The samples have now been diluted 1:10 and 1:100. Alternatively use proportionally smaller volumes (i.e. 5 ml sample and 4.5 ml of 1.11% lanthanum).
- 4. The standards are prepared from stock solutions that when diluted 1:10 will give the necessary concentrations for calibration. The stock solutions are prepared from 1000 ppm standard metal solutions purchased from Ricca Chemical Co. Record dates of preparation and expiration (3 months) in sample prep manual.
- 5. The final concentration of calibration standards will be,
 - 1. Ca: 1.00, 3.00, 5.00 and 10.00 mg/l
 - 2. Mg 0.10, 0.50, 1.00 and 1.50 mg/l
 - 3. Na 0.10, 0.50, 1.00, 1.50 and 2.50 mg/l
 - 4. K 0.10, 0.50, 1.00, 1.50 and 2.50 mg/l
- Set report format: Go back to index by pressing the "Index" (F10) key, then select the "Report Format" (number 13). Here you can enter the name of the operator, batch name, and date. No other changes are usually necessary.
- Start program: Press the "Start" (F11). The screen will show the message "Select Lamp 3"; press "Start" (F11). The program will now run to completion.
- Calibration of other Metals besides Fe/Mn: The other metals tested by flame AA does not require an ionization suppressor and can be directly aspirated. See specific method on computer for required calibration standards.

Standard and Sample Preparation: Procedure for Fe:

- Label the sample beakers with the last three numbers of the tiny tab number. Using the adjustable pipette, pipette 1.0 ml of Ca solution into each disposable beakers.
- 2. Add 4.0 ml of sample to each beaker using the adjustable pipette.
- The standards are prepared from 1000 ppm standard metal solutions purchased from LabChem or Spex Certiprep. Add 20 ml Ca solution and 1 ml conc HNO3 to each 100 ml of standard prepared. Record dates of preparation and expiration (3 months) in sample prep manual.
- 4. The final concentration of Fe calibration standards will be: 0.3, 0.5, 1.0, and 3.00 mg/l
- Set report format: Go back to index by pressing the "Index" (F10) key, then select the "Report Format" (number 13). Here you can enter the name of the operator, batch name, and date. No other changes are usually necessary.
- Start program: Press the "Start" (F11). The screen will show the message "Select Lamp 3"; press "Start" (F11). The program will now run to completion.

Quality Control:

- 1. Analyze a Blank after every 10 samples to verify baseline stability. Rezero when necessary.
- Duplicate Spikes replicate spikes are to be performed on 10% of samples. Recovery of spike in drinking water should be between 80% and 120% with a precision of 20%. Recovery of spike in wastewater should be between 75-125% with a precision of 25%. Spike level should not exceed MCL for analyte. Spiking solutions are available from Cresent Chemical Co.or SPEX.
- External Reference Sample Analyze a known reference sample after initial calibration and after every ten samples to confirm the test is in control.
- See Table 3111:III in Standard Methods for recommended concentrations of standards to be run, limits
 of acceptability, and reported single operator precision data.
- 5. Analyze External Reference Sample on quarterly basis. Solutions available from APG, ERA or SPEX.

CRITERIA FOR ACCEPTABILITY OF RUN

- 1. Recoveries of spikes and controls are within acceptable range.
- 2. Blank values below detection levels.
- Acceptable levels of precision.

NOTE: If any of the acceptance criteria are not met, the analyst must stop the run, correct the problem and and retest the samples.

OUT OF CONTROL PLAN

No sample should be reported until the all acceptance criteria have met. Or the out-of-control condition has been corrected and any problems or departure from protocol identified.

Trouble Shooting:

1. PROBLEM - poor precision,

- Check alignment of hollow cathode lamp. Check that capillary hose is not clogged. Make sure burner is clean and flame appears smooth and even. Replace pinched or crimped capillary tubing.
- PROBLEM error message Refer to instrument service manual

MCHD Laboratory SM 3111B

- Page 5 of 5
- PROBLEM Contamination Check supplies associated with sample collection for contamination. Check rinse water, sample diluent, pipettes, sample cups. Make sure work area is free from dust.

Shutdown Procedure:

Turn off acetylene, IBM PC,and AA300, and exhaust hood, in that order.

Calculations:

The results will be printed and should be recorded on a worksheet. The dilution factor must be shown and considered in the calculations.

Reporting:

- The data from the printout should be transferred to the worksheet. Verify that controls were within acceptable range and that duplicates are within range.
- The lab clerk enters the results into the computer. Results are reported in units and number of significant figures consistent with MDL of method.

References:

- 1. "Analytical Methods for Flame Atomic Absorption Spectrometry" Varian Techtron Pty, Limited, 1989.
- 2."Standard Methods for the Examination of Water and Wastewater" 18th Edition 1992 by APHA, AWWA, and the WEF.

Written by: David Holland Date: January 1999

Approved by:_

Laboratory Director

DETERMINATION OF INORGANIC ANIONS BY ION CHROMATOGRAPHY (EPA METHOD 300.0) USING THE DIONEX DX-80 ION ANALYZER

PRINCIPLE

This method determines the following inorganic anions: fluoride, chloride, nitrite, bromide, nitrate, phosphate and sulfate.

A small volume of sample (approx. 1 ml) is loaded into the ion chromatograph. The injection valve injects 10 ul of the sample into the flow of eluent. The eluent (a NaHCO3 - Na2CO3 solution) flows continuously through the IC and serves as a carrier for the 10 ul of sample and facilitates in the separation process.

The anions of interest are separated using suppressed conductivity detection, and are identified and quantified by comparing data to those obtain from a standard solution. The major parts of the system are the liquid eluent, high pressure pump, sample injector, guard column, the separator column, the chemical suppressor and the conductivity detector. The guard column protects the separator column, which separates the anions based on their size and charge. The function of the suppressor is to chemically reduce the background conductivity of the electrolytes in the eluent, and to convert the sample anions into a more conductive form. The detector then detects the conductivity of the solution, which varies depending on the concentrations of the anions (higher conductivity indicates a greater concentration of the anion).

SAMPLE CRITERIA

The holding times for drinking water samples are as follows:

Fľ	28 days
CI.	28 days
NO ₂ ⁻	48 hours
NO ₃ [*]	48 hours
SO_4	28 days
Br	28 days

Samples submitted for IC testing routinely should be run within 48 hours of collection, especially for nitrite and nitrate. If testing needs to be delayed, the sample can be preserved with sulfuric acid; preserved samples can be held for up to 28 days and the nitrate results reported as combined Nitrate/Nitrite. Any samples not tested within specified holding times should be identified on the worksheet.

Samples bottles dedicated for IC testing only are placed on the IC bench. As soon as a sample is setup, place it on the white tray for easier storage. After 6 weeks the containers should be emptied and discarded. Nondedicated samples (i.e. those also submitted for additional testing) should be returned to the designated cart after IC testing.

QUALITY ASSURANCE

Operator competency - Ion chromatography may be performed only by analysts who have been trained and who have demonstrated competency with the procedure. One check consists of preparing the calibration standards and calibrating the I.C. An r-value of 0.995 or higher (correlation coefficient of 99.95%) in the linear fit type must be attained for each analyte of interest. Another way to demonstrate competence is to run a minimum of four replicate analyses of an independently prepared sample. Each analyte of interest in the sample should have a known concentration between 5 and 50 times the MDL.

Blank - A blank consisting of nanopure water should be included at the beginning of each run. The results for the blank must be below the MDL for each analyte.

Control standard(s) - Controls representing two concentration levels for each analyte (ICMIX HIGH & ICMIX LOW) must be analyzed as described below. The source of the analytes used to prepare these controls must be different from the source used to prepare the calibration standards. An ICMIX HIGH stock solution of the 7 anions with the following final concentrations:

Anion	Final Conc	Preparation in 500 ml volumetric flask
FI.	20 ppm	10 ml of 1000 ppm Fl std
CI.	100 ppm	50 ml of 1000 ppm Cl std
NO2	65.5 ppm	10 ml of 1000 ppm NO2-N std
Br'	20 ppm	10 ml of 1000 ppm Br std
NO3	100 ppm	50 ml of 1000 ppm NO3 std
PO4	100 ppm	50 ml of 1000 ppm PO4 std
SO4	100 ppm	50 ml of 1000 ppm SO4 std

should be kept on hand. Use this undiluted at the beginning of the run and after every tenth sample. Each week, prepare an ICMIX LOW solution from the ICMIX HIGH solution as follows: Using a 100 ml volumetric flask add 1 ml if ICMIX HIGH using the 1 ml volumetric pipet and fill to mark with nanopure water. Record date made in the IC logbook under Quality Control. Run the IC LOW at the beginning of the days run and after every 10th sample after the IC HIGH. The percent recovery for each anion should be between 90 and 110%.

Duplicate spikes – Duplicate spikes should be run after every tenth sample. The spike should not be less than four times the MDL, and it should increase each anion concentration by more than 25% of the background value. A suitable spike can be prepared by adding one part ICMIX HIGH to three parts sample. The average percent recovery for each anion should be between 80 and 120%. The duplicate spikes should be within 10% of each other. Record average percent recovery of spikes and duplicate percent difference on worksheets. Note: if the concentration of the spike is less than 25% of the background concentration, the spike recovery should not be calculated.

If any of the above control criteria are not met, do not report sample results until the problem has been resolved. Ion Chromatography Page 3 of 9

External controls & chart analysis - In addition to the control standards tested with each batch of samples, an external reference standard (i.e. SPEX IC standard or WS proficiency sample) should be tested on a quarterly basis; however we like to run one at the end of each run.

CALIBRATION FOR GOUNDWATER (DRINKING WATER AND MONITORING WELLS):

Calibration for groundwater samples is described below. Calibration should be performed whenever: 1) controls are out of range; 2) a new batch/lot of eluent/regenerant is made or 3) when a column, suppressor or detector is changed.

- Prepare 1/10, 1/100, 1/1000 dilutions of the calibration standard ordered from Dionex, which contains 20 mg/l fluoride, 100mg/l chloride, 100 mg/L nitrite, 100 mg/L bromide, 100 mg/l nitrate, 200 mg/L phosphate and 100 mg/l sulfate.
- 2. Run calibration standards beginning with the highest dilution (1/1000) first.
- Create calibration sequence: File New Sequence Standards Next. Skip section on Choosing Timebase – name the sequence calibMMDDYEAR and initials – Next – Done.
- 4. Add sequence to batch file before starting
- 5. After all four calibration standards have been ran, check the calibration curve.
 - a) Double click on any of the calibration standards (Cal Std 1). You will get a chromatograph
 - b) Click on Calibration Plot icon, upper right corner or click on VIEW Calibration Plot. You will see a graph of the first analyte along with the correlation coefficient percentage for each analyte. Only anaytes with percentage of 99.5 or greater are acceptable. Generally try for a 99.98% for an average of all seven analytes to pass quality control checks. See the principle analyst if the result is a lesser value.
 - c) The mean retention times and detection range are automatic on the DX-80 Ion Analyzer and can not be changed or edited.

PREPARE MDL STUDY

The Method Detection Limit is the lowest concentration of a substance that can be identified with accuracy and confidence by a certain method or analysis.

- Prepare a Cal Std 1 level each analyte separately using the secondary standards (not Dionex mix)
- Make seven replicates of this dilution and run through the Ion Analyzer under the Unknown Method.
- Collect data and calculate the standard deviation for the seven replicates. Multiply the standard deviation values by 3.143. This number will be the Method Detection Limit.

GENERATE BACKLOG REPORT:

- On a network computer not the Instrument computer. Double click on LABWORKS icon. Enter password. Click on OK. Click on backlog. Click on analysis code. Click on OK. Type in #ICANION. Click on OK. Click on display report. Click on print. Click on exit until you are out.
- Check the clipboard to see if a worksheet has been initiated listing samples that need repeat testing; if so, append worksheet with samples on backlog report.
 - a) Account for all specimens on backlog report
 - Samples may have been tested in a previous run but not recorded. Record these results and give to the clerk.
 - ii) If a sample appears on the backlog but needs to be tested by a different method (i.e. wastewater), inform the clerk so that the analysis ordered can be modified.
 - b) Include any "new" samples on the I.C. bench that have not yet been entered into the computer.

SAMPLE PREPARATION

Groundwater (drinking water and monitoring wells) should be filtered through 0.45 um membrane filters before injection:

- Rinse the syringe once with the sample water. Then fill syringe with about 10 ml of sample water.
- Filter a minimum of 2 ml of sample through the 0.45 membrane into a labeled autosampler vial discarding the first few drops.
- 3) Place autosampler cap on vial and press down using the provided tool. Make sure the cap goes in straight and remove any air bubbles seen in the vial (invert or knock gently).
- 4) Place sample in autosampler rack. The order in the rack must match that on the schedule. Note: If you suspect the result of a sample to be above that of the calibration standard for an analyte, make an appropriate dilution. Check by measuring conductivity – anything greater than 700 uS will need to be diluted.
- 5) Include duplicate spikes for every 10th sample. Add 1 part ICMIX high to 3 parts filtered sample. Then IC HIGH, LRB, IC LOW. The laboratory reagent blank (LRB) is necessary to minimize carry over as the IC low is 100 times less than the High. Double check any samples where analyte concentrations are low after a high sample to verify analyte is even detected.

Samples which may contain high concentrations of chloride or organic contaminants (Carmel Area Wastewater District and ESF), are run on the DX-100 and require additional filtering through Dionex OnGuard P, Dionex OnGuard Ag, and Dionex OnGuard H filters before injection. See supplemental procedures.

SYSTEM START-UP:

- Ensure the eluent bottle is at least ¼ full. If it is less, depending on size of run, prepare new eluent (and regenerant):
 - a) Prepare 2 liters of a final eluent concentration of 8.0 mM Sodium Carbonate and 1.0 mM Sodium Bicarbonate by diluting one Dionex AS 14A Eluent Concentrate bottle (P/N 057060) into two 1L-volumetric flasks. Bring each to volume (1000 ml) with nanopure water. Makes 2 liters.
 - b) Use the designated filter/vacuum flask, a filter funnel, a clean 0.45um membrane filter, and a large magnetic stir bar to degas the eluent. Pour the eluent into the filter funnel and turn on the vacuum. Set the magnetic sticker at medium to high speed. Once all the eluent has been filtered, keep the vacuum and magnetic stirrer on for 15-20 minutes, allowing the eluent to degas.
 - c) Turn off the magnetic stirrer and the vacuum. Remove the filter funnel. Carefully decant the degassed eluent into the eluent bottle, without aerating. Make sure the cap is on tightly, and the tubes are securely attached.
- 2) Whenever new eluent is prepared, new regenerant must also be made.
 - Prepare 2 liters of a final anion regenerant concentration of 72 mN Sulfuric Acid by adding one Dionex Anion Regenerant Concentrate bottle (P/N 057559) to two liters of nanopure water.
 - b) Mix in the regenerant in the designated filter flask using the stir bar and degas for 15-20 minutes.
 - c) Turn off the magnetic stirrer and the vacuum. Remove the filter funnel. Carefully decant the degassed regenerant into the REGEN bottle, without aerating. Make sure the cap is on tightly, and the tubes are securely attached.

DX-80 OPERATION

- Turn on nitrogen gas cylinder (main knob only), autosampler (rear right hand corner), ion analyzer (rear panel right hand side) and computer.
- Double click on Peaknet to open computer program. File Panels\Dionex DX-80 System for the Control Panel.
- 3) Under the DX-80 Status click on CONNECT to connect analyzer to computer
- 4) Turn on the pump by clicking the ON button on the DX-80 Control Panel. Prime the pump by turning the pump head waste valve knob counter clockwise and leaving it open for about 5 seconds. Close the pump valve knob by turning clockwise until secure. After changing to new eluent, it is a good idea to leave pump valve open until all air bubbles have been purged look for the air bubbles coming out the eluent bottle until it reaches the waste line at the pump. This will allow any air bubbles to be pumped to waste instead of through the columns.
- Allow the system to equilibrate for 30 minutes minimum, generally one hour if new eluent is used. Once ready, the operating pressure should be 2000+- 300 psi (usu 2100

psi); and the operating total conductivity background should be < 30 uS (usually 25.00uS). You can offset the background and zero the reading by clicking the Autozero button on the Control Panel.

- To begin a run, create a sequence worksheet by clicking on File New Sequence. (May have to do this twice if worksheet is not already open.)
 - a. It will then prompt you to choose Standard or Unknowns. Choose Unknowns -Next
 - b. Skip next screen where it prompts you to specify timebase,
 - Estimate number of unknowns (you can always add or delete samples from sequence when done.
 - d. Fill out file name you wish to save the file We save under MMDDYEAR and initials: (05052002tl) and press enter.
 - e. Press Done when prompted to exit wizard.
 - f. A worksheet will appear where sample identifications can be added after the calibration data (line #5). Follow printed worksheet first include a *blank, ic low, ic high, lrb*, then the samples. Note for the first set, the lrb is listed as a sample. *Duplicate spikes* are required for every 10th sample or a minimum of 10% of samples. Finish off sequence with a known quality control standard, usually a proficiency standard such as WS 60 or Ultra QC and another blank (LRB).
 - g. Change dilution factor if sample was diluted; default is one. Save by pressing the SAVE icon (floppy disk).
- To start the run click on Batch Edit Add double click on the newly created sequence, or the one you want run - then Start to begin.
- 8) Make sure autosampler vials are in order and the green light is on 'Run' not 'Hold'.
- Record date, total conductivity and pressure in the log notebook at which the run has started.
- 10) During or after the run, verify that the blank and QCs (IC HIGH, IC LOW, IC CHECK) are within range. If not stop the run by clicking on Batch Stop after current sample, and notify principal analyst to investigate and solve the problem before resuming the run.

REPORTING RESULTS

- When run is complete the analyst performing the run is responsible for recording and reporting results. Review each chromatogram to verify that the peaks were properly identified. Retention times may shift if there was a sudden change in pressure. Changes to the peak name can be made by a right click on the peak and choosing the correct analyte then save.
- The results are found on the worksheet next to the sample ID and can be exported to an excel file for accuracy calculation:
 - a) Click on any sample cell i.e. ic low, cell will be outlined.

- b) Click on File Batch Report Export (unclick the Printout option- computer is not connected to any printer) – Excel file format
- c) For sheets to be exported, choose <u>only</u> "Summary INJ vs. Area, Ht, Amt." Unclick the Integration, Calibration, Peak analysis, Summary-INJ vs. Anion, and Audit Trail options as they are extra and rarely needed for our purpose.
- d) Click on Finish then OK on batch menu. Status will appear and when transfer is complete, press OK to exit.
- 3) To copy exported file onto a floppy, right click on Start icon on lower left screen and choose EXPLORE for Windows Explorer. Under C:\Chromel\Export folders are the files just exported. Highlight the correct sequence and drag to A:\ drive to copy file. (Make sure you have a floppy disk inserted).
- 4) Open exported file under an EXCEL program the instrument computer does not have one so use a network computer. You will see three types of charts: first-Sample vs. Area, second -Sample vs. Height, and third - Sample vs. Amount. Copy all of the Sample vs. Amount table to an old/previous excel file.
- 5) The Excel Results worksheet is permanently saved under G:\Laboratory\Data\Water\IC Data\2002\ under the correct month. It is also saved in Tess' computer under C:\My Documents\IC Data\ and correct year and month. Easiest way to create the worksheet is to open a previously saved file (of the same year and month) and then cut and paste the data. There are two worksheets in each file, one for the complete results, the other for the raw data (the Sample vs Amount table exported from peaknet).
 - a) Before any changes are made, save the file under a new name: MMDDYY and initials
 - b) On RAW worksheet, delete old table and replace with recently ran sequence data. Add a column between Sample ID and Fluoride Amount for the dilution factor.
 - c) Change Date Analyzed and Analyst if applicable. Calibrations are generally done once a month with the most recent noted under Date of Calibration – change if necessary.
 - d) Copy and paste data results from raw worksheet onto Results worksheet under correct sample name. Use the Paste Special option – Values - to retain similar fonts on results worksheet. % Recoveries will be automatically calculated as will % Differences, and Averages for the duplicate spikes but references to certain cells may need to be changed for the correct result.
 - e) Verify that all QC are accurate before entering into labworks.
- For drinking water, results should be recorded as ND Not Detected for levels below DLR (Detection Limit for Reporting) as follows:
 - a) Fluoride 0.1 mg/L
 - b) Nitrate 2.0 mg/L
 - c) Sulfate 0.5 mg/L
 - d) Bromide 0.1 mg/L
 - e) Chloride, Nitrite, Phosphate 1.0 mg/L
 - f) Any samples with readings above the calibration range (20 mg/L fluoride, 100 mg/l chloride, nitrite, bromide, nitrate, sulfate, and 200 mg/l phosphate) needs to be diluted and

repeated in the next run. List these samples on a new worksheet with the appropriate dilution and place the worksheet on the clipboard.

7) Do not report results if control/spike values do not fall within limits (refer to section on quality control). If controls, spikes, etc. are out of range, notify the principal analyst. If controls are within limits, date and initial the worksheet and give the worksheet to the clerk for data entry. When the worksheet and backlog are returned place them in the binder.

SHUT DOWN

After the run is complete the Ion Analyzer can be shut down. The IC should be shut down on weekends if the system is not in operation on Friday night so as not to damage the suppressor unit:

- 1) On the Control Panel screen of Peaknet turn OFF pump and DISCONNECT DX-80
- 2) Close Peaknet.
- 3) Turn off DX-80, autosampler and close nitrogen cylinder valve.

Ion Chromatography Page 9 of 9

PREVENTIVE MAINTENANCE:

- 1) Each quarter, replace the bed supports on guard column
- 2) Maintain the following spare parts. These items are considered consumables:
 - a) Anion Refill Kit (Part No. 057069) contains 4 bottles each of AS14A eluent and anion regenerant concentrate.
 - b) AS14A anion separator column, 3 mm (Part No. 056901)
 - c) AS14G anion guard column (Part No. 056899)
 - d) AMMS III suppressor (Part No. 056751)
 - e) DS5 Detection Stabilizer (Part No. 057290T)

DOS AND DON'TS

- * Try to make additions, changes, and deletions to the sequence during the middle of a run and then save immediately. If the changes are not saved immediately, the program may get confused on which sequence to use and will freeze. If this happens, wait until the current sample is completed, turn off all equipment and wait for about 15 minutes before restarting.
- * Be gentle when loading samples onto the autosampler, especially the first rack. If racks are installed too roughly, conveyor belt may get stuck and samples will not be injected in the proper sequence.

Ion Chromatography Page 10 of 9

REFERENCES:

- 1) DX-80 Ion Chromatograph with SRS Control Operator's Manual, Dionex Corporation, 2002. 2) Methods for the Determination of Inorganic Substances in Environmental Samples, Method Number 300.0, Determination of Inorganic Anions by Ion Chromatography, John D. Pfaff, U.S.
- Environmental Protection Agency, 1993. 3) Standard Methods, 18th Edition, 1992. Part 4110.

Originally written by: Johanna Rosen for DX-100 Date: 12-96 Updated by: Theresa Lam for DX-80 Ion Analyzer Date: 05-02

Approved by: ____

(Lab Director's signature)

Appendix 7-C

Contouring Protocols for Chloride Isocontour Maps

WATER RESOURCES AGENCY

MEMORANDUM.

Monterey County

DATE: April 17, 2018

FROM: Sean Noble

TO: Water Quality

SUBJECT: How to Contour SWI in ArcGIS

Background

The purpose of this memo is to describe the process of creating the initial seawater intrusion contours using ArcGIS. This is an attempt to standardize the process. Contours are based on chloride (Cl) data sampled from coastal wells in the Pressure 400-Foot and Pressure 180-Foot Aquifers. This data for comes from three primary sources. First, coastal wells are sampled twice each summer by Agency staff. Second, monitoring wells are sampled once each summer, using a portable pump. Finally, data from outside sources are pulled in to supplement the data and create better geospatial coverage. Historically contours are generated on every odd year, using even year data to fill any data gaps. Data is used to create contours that are then added to the historical seawater intrusion maps. The maps are as follows:

P180 Sea Water Intrusion Map

P400 Sea Water Intrusion Map

(In the future the deep aquifer may be added to the process)

After reviewing all the data and uploading it to the WRAIMS database, we are ready to move on to ArcGIS.

**** The 2017 year Pressure 400 will be used as an example ****

ArcCatalog

Open ArcCatalog and navigate to R:\Workspace\Common\WaterQuality\SWI. Notice that the folders are labeled by year with the exception of the CommonDirectories. This folder stores GIS data that can be used for any year that is contoured. It contains commonly used boundaries, databases, and layers.

In ArcCatalog copy/paste folder of the last year contoured (2015_SWI) and rename current year (2017_SWI).

This will be the naming convention for naming files:

S:/projects/9100_Salinas_GSP/gsp/valley-wide/Chapter_7\Appendices\Appendix 7-C\How To Contour Chloride Isocontours.doc 1 Aquifer_Year _Version(if applicable), examples:

🖻 🚞 2017_SWI
🛞 🚞 BOD_BOS
🗐 🧰 GISData
🗟 🛅 FinalContours
P180_2017_F.shp
P400_2017_F.shp
III 🔚 PreliminaryContours
🗵 🚞 SupportData
🗵 🥁 WellLayers
🛞 🚺 SW12017.gdb
🗄 🛄 Maps

Within each year there are two main folders:

GISData

FinalContours, storage of approved shapefiles PreliminaryContours – primary exported contour shapefiles SupportData – secondary export shapefiles, database tables, and imagery Maps

Stores final project maps and products

ArcMap

new project.

Step 1 - Project Formatting

Rename the ArcMap contour projects stored in the Maps folder: R:\Workspace\Common\WaterQuality\SWI\2017_SWI\Maps\P400_2015.mxd -> R:\Workspace\Common\WaterQuality\SWI\2017_SWI\Maps\P400_2017.mxd By using the previous project, all of the background shapefiles can stay and be reused for the

Step 2 - Database Formatting

Navigate to: R: Workspace Common/WaterQuality/SWT/CommonDirectories/Databases And open the SWIContours (Current).mdb database First, make sure that all relevant data has been reviewed and loaded to WRAIMS. Open the _Contouring_Start_ table and edit the year to the year being contoured.

Run the macro: SWI_ContourTables

The macro SWI_ContourTables runs four make table queries to produce these tables: SWI180_ALL SWI400_ALL SWI_180_CONTOUR_WELLS

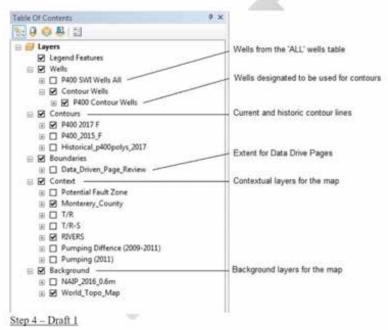
S/projects/9100_Salinas_GSP/gsp/valley-wide/Chapter_7/Appendices/Appendix 7-C/How To Contour Chloride Isocontours.doc 2

SWI_400_CONTOUR_WELLS

The '..._ALL' tables include all wells that are in the Monthly Water Quality program and in the appropriate aquifers. Some wells have the aquifer designation PRESSURE BOTH. These well are included in both '..._ALL' tables, but are not included in the contouring. The '..._CONTOUR_WELLS' tables are a subsection of the '..._ALL' tables and only include wells to be used in contouring for the respective aquifers.

If certain wells need to be excluded, modify the **tblExcludedWells** table. Wells are excluded based on facility code and aquifer (180 or 400), so make sure both of those fields are filled out correctly. This table is used dictate which wells are excluded and to document which wells have been excluded and why. It should be kept updated as changes to the dataset are made. After adding new wells to tblExcludedWells, rerun the macros to update the tables.

The ExternalData table can be used to add data that is not stored in WRAIMS but has been approved to be used for contouring. In the 2017 example, the data from the Monterey Peninsula Water Supply Project monitoring wells was added this way. Only wells with a FACILITY_CODE and in the WellsAll GIS layer can be utilized in this manner (R:\Workspace\Common\MapElements\WellsAll.lyr).


The tables include both present and past measurements and automatically include data from the previous year if the current year is missing data.

Field Name	Description
FACILITY CODE	Facility Code of the well
FACILITY_NAME	State Well ID based on township and range
BASIN_NAME	Aquifer designation
ContourValue	Value used to contour as a year average of all samples taken during the most recent year
ContourValYr	Year that the value used to contour was sampled
ConYrCl	Contour year average of CI data
ConYrStDev	Contour year standard deviation of CI data
1yrBackCl	Previous year average of CI data (2016)
1YrStDev	Previous year standard deviation of CI data (2016)
2yrBackCl	Two years prior average of Cl data (2015)
2YrStDev	Two years prior standard deviation of Cl data (2015)
3yrBackCl	Three years prior average of Cl data (2014)
3YrStDev	Three years prior standard deviation of CI data (2014)
PERF_START	Start of recorded perforation in well casing
PERF_END	End of recorded perforation in well casing
Use	Abbreviation of the wells primary uses
WATER_USE_DESCRIPTION	Description of the wells primary uses
FACILITY_STATUS_NAME	The status of the well

S:/projects/9100_Salinas_GSP/gsp/walley-wide/Chapter_7\Appendices\Appendix 7-C\How To Contour Chloride Isocontours.doc 3 Step 3 - Data Labeling & Symbology

In ArcGIS:

All of the well layers in the ArcMap projects should automatically update to the 'Current' database values. The projects should be laid out in similar formats as demonstrated below. Compare the values and dates of various wells with recorded values in WRAIMS to ensure the correct data is being used.

To generate profiles run the tool ArcToolbox -> SWIContouringTools -> SWI_Spline_Coastal_Contouring

 And fill out the fields

 Contour Wells:
 Wells\Contour Wells\P180 Contour Wells

 Z value field:
 SWI_400_CONTOUR_WELLS.ContourValue

 Spline type:
 TENSION

 Number of points:
 4

 Weight:
 0.01

S/projects/9100_Salinas_GSP/gsp/valley-wide/Chapter_7/Appendices/Appendix 7-C'How To Contour Chloride Isocontours.doc 4

Contour Output:

R:\Workspace\Common\WaterQuality\SWT\2017_SWT\GISData\PreliminaryContours\ p400_2017_v1.shp

In Layout view change any labels and titles to match the current year and draft, and make any appropriate changes to the legends.

Export to PDF,

R:Workspace/Common/WaterQuality/SWI/2017_SWI/GISData/PreliminaryContours/p400_201 7_V1.pdf. From PDF, print to 11x17 and review. If all the data is there and the labels and symbology are correct then Print to Plotter, 30x30.

Steps Summary

Version 1 is the computers attempt to contour the data based on all the data that has been collected and reviewed for the appropriate aquifer. The next set of versions are created through careful examination of the data to establish what wells will be excluded from the contouring. Use past exclusion to help with wells with ambiguous aquifer designations and refer to well logs, well measurement histories, piper diagrams, and sample notes for wells that don't seem to fit the general trend. Once the list of wells to exclude is agreed upon, run the tool again. This process is iterated until **tblExcludedWells** is agreed to be final by the project supervisor. The next step is to generate the last set of computer generated lines (AT_2017_F) and edit them to match previous contours and represent the general trend of segwater intrusion.

Editing Contour Lines

The computer generated AT_2017_F needs to stay intact incase it has to be referenced at some point. The first thing to do is copy/paste AT_2017_F into the R:\Workspace\Common\WaterQuality\SWI2017_SWI\GISData\FinalContours folder (this will be the version you edit). In ArcGIS:

Right click on the layer you wish to edit Go to Edit Features Click Start Editing

It sometimes makes editing easier to make the edited layer the only selectable layer.

Right click on layer Go to Selection Click on Make This The Only Selectable Layer

Double-click on the contour line you wish to modify. Many vertices will appear on the line as boxes. These are the points to drag in order to modify the line. When adding lines remember to edit the attribute table to add the appropriate contour value. Due to the limited data the contours will have to be heavily edited to achieve a general representation of sea water intrusion into the aquifers. As a general rule, lines will not recede approved by the project lead. Unless otherwise

St/projects/9100_Salinas_GSP/gsp/valley-wide/Chapter_7/Appendices/Appendix 7-C/How To Contour Chloride Isocontours.doc 5 directed, lines that are seaward of past contours will default to the furthest inland historical extent (use the historical contour lines). Judgement will have to be used to decide how to alter lines to represent general seawater intrusion: work with the project lead on hand kriging and editing.

<u>Final Clean Up</u>

Once the list of excluded wells has been finalized copy the "Current" database and rename it with the contour year. This creates a backup and documents which wells were used and what values. Similarly, ensure that all shape files are in the correct places and properly labeled, especially the final contours.

 $\label{eq:siprojects} S:\projects \projects \projects$

Appendix 7-D

Department of Drinking Water Supply Wells for Water Quality Monitoring Network

	GAMA Department		ell Screen Info	· ·		linates	Monitorian	Data Para
I		W	ell Screen Info T		Coord	linates	Monitoring Date Range	
GAMA Well ID	Water System Name	Top of Screen Depth (ft bgs)	Bottom of Screen Depth (ft bgs)	Screen Length (ft)	Latitude (NAD83)	Longitude (NAD83)	First Year	Last Yea
2700503-001	ASSISI MWC	300	430	130	36.7578	-121.6629	2002	2018
2700509-001	OAK MANOR WS	N/A	N/A	40	36.8085	-121.6455	2003	2018
2700511-001	NORMCO WC	N/A	N/A	N/A	36,7909	-121.6576	1995	2018
2700511-002	NORMCO WC	N/A	N/A	N/A	36.7888	-121.6604	1995	2018
2700511-003	NORMCO WC	N/A	N/A	N/A	36.7836	-121.6487	1996	2018
2700518-001	WATSONVILLE PRODUCE INC	350	490	140	36.7911	-121.6717	2003	2018
2700522-001	CABANA HOLIDAY WS	207	565	358	36.7911	-121.6717	2001	2019
2700534-001	COLONIAL OAK WC INC	N/A	N/A	60	36.7720	-121.6850	2002	2019
2700534-003	COLONIAL OAK WC INC	N/A	N/A	50	36.8176	-121.6399	2002	2019
2700534-004	COLONIAL OAK WC INC	N/A	N/A	100	36.8175	-121.6398	2002	2019
2700536-002	CORRAL DE TIERRA ESTATES WC	N/A	N/A	N/A	36.5704	-121.7264	2002	2017
2700536-004	CORRAL DE TIERRA ESTATES WC	120	250	130	36.5704	-121.7265	2002	2018
2700547-001	DESMOND RD WS #03	248	288	40	36.8030	-121.7005	2003	2018
2700548-001	DOLAN RD MWC	246	321	75	36.7959	-121.7371	1997	2019
2700552-001	ECHO VALLEY SCHOOL WS	N/A	N/A	N/A	36.8270	-121.6665	2000	2017
2700552-003	ECHO VALLEY SCHOOL WS	N/A	N/A	N/A	36.8250	-121.6644	2005	2019
2700577-001	ELKHORN SCHOOL WS	N/A	N/A	N/A	36.7971	-121.7181	1998	2019
2700579-001	ELKHORN RD WS #04	140	150	10	36.8400	-121.7206	2002	2019
2700588-003	GABILAN WC	390	712	322	36.7515	-121.6213	2003	2018
2700586-008	GABILAN WC	470	480	10	36.7557	-121.6178	2003	2018
2700589-001	GLENN AVE WS #01	320	380	60	36.8253	-121.6638	2003	2018
2700594-001	HIDDEN VALLEY WA	404	444	40	36.8372	-121.7041	2004	2018
2700594-002	HIDDEN VALLEY WA	N/A	N/A	N/A	36.8344	-121.6893	2004	2018
2700612-001	LAGUNA SECA WC	N/A	N/A	N/A	36.8279	-121.6742	2005	2018
2700624-001	LEAFWOOD COMMUNITY WA	240	296	56	36.8084	-121.7046	2002	2018
2700634-001	CHETMOORE ACRES WA	254	566	312	36.8439	-121.6758	2003	2019
2700638-001	MAHER RD WS #05	220	230	10	36.8415	-121.6749	2003	2018
2700656-002 2700656-006	MORO COJO MWA	N/A N/A	N/A	N/A 180	36.8144 36.8145	-121.6424	2009	2018
2700656-007	MORO COJO MWA	_	N/A N/A	160 N/A	36.8135	-121.6422	2004	2018
2700665-007	MORO COJO MWA OAK HEIGHTS W & R CO INC	N/A N/A	N/A	40	36.8197	-121.6431 -121.6393	2004	2010
2700665-001	OAK HEIGHTS W & R CO INC	N/A	N/A	N/A	36.8101	-121.6557	2000	2019
2700665-002	OAK HEIGHTS W&R COINC	N/A	N/A	200	36.8102	-121.6580	2003	2019
2700669-002	ORCHARD LN WS #02	360	480	120	36.7750	-121.6652	2003	2018
2700674-002	PARADISE LAKE MUTUAL WATER CO.	398	438	40	36.8164	-121.7055	2003	2010
2700674-002	PARADISE DAKE MUTUAL WATER CO.	340	400	60	36.8164	-121.7055	2004	2019
2700675-001	NOT AVAILABLE	N/A	N/A	N/A	36.8100	-121.6900	2004	2016
2700677-001	NOT AVAILABLE	N/A	N/A	N/A	36.8100	-121.6900	2001	2017
2700686-002	GARLEN COURT WS	422	502	80	36.8206	-121.6748	1998	2018
2700687-001	PESANTE RD WS #02	90	192	102	36.7791	-121.6578	2011	2018
2700691-001	PESANTE RD WS #06	148	308	160	36,7856	-121.6274	2003	2018
2700702-002	PRUNEDALE MWC	312	408	96	36.8101	-121.6557	2003	2019
2700702-003	PRUNEDALE MWC	N/A	N/A	N/A	36.8102	-121.6580	2003	2019
2700702-004	PRUNEDALE MWC	360	400	40	36.8099	-121.6588	2003	2019
2700705-001	PRUNEDALE SCHOOL WS	N/A	N/A	N/A	36.7786	-121.6657	2002	2019
2700709-001	RANCHO BORROMEO MWS	200	408	208	36.7786	-121.6657	2004	2018
2700713-001	ROLLING HILLS RANCHO WA	N/A	N/A	10	36.8271	-121.6308	2004	2018
2700713-005	ROLLING HILLS RANCHO WA	N/A	N/A	40	36.8272	-121.6309	2002	2018
2700713-006	ROLLING HILLS RANCHO WA	N/A	N/A	N/A	36.8271	-121.6308	2002	2018
2700728-001	SAN ARDO WD	80	130	50	36.0137	-120.9152	2003	2018
2700733-001	SAN JUAN RD WS #01	184	224	40	36.8288	-121.6770	2003	2018
2700738-001	SAN MIGUEL WS #01	291	391	100	36.8288	-121.6770	2003	2018
2700738-002	SAN MIGUEL WS #01	340	400	60	36.8286	-121.6775	2003	2018
2700766-001	STRAWBERRY RD WS #06	200	235	35	36.7318	-121.6748	2003	2018
2700775-001	TIERRA VERDE MWC	200	356	156	36.5675	-121.7306	1997	2015
2700775-002	TIERRA VERDE MWC	100	440	340	36.5671	-121.7313	2004	2018
2700792-001	SUMMERHILL MHP WS	440	500	60	36.7970	-121.6618	2003	2018
2700837-001	BLACKIE RD WS #05	220	312	92	36.7720	-121.6850	2003	2018
2700838-001	SPRING CANYON WA	N/A	N/A	10	36.8162	-121.6241	1998	2017
2700842-002	BAUMANN RD WS #01	290	310	20	36.7870	-121.7214	2003	2018
2700851-001	NOT AVAILABLE	N/A	N/A	250	36.7388	-121.6780	2003	2018
2700853-001	COLOR SPOT NURSERY WS #01	420	600	180	36.7318	-121.6748	2003	2018
2700856-001	ALTMAN PLANTS WS #01	N/A	N/A	N/A	36.6297	-121.5392	1986	2019
2700064-004	DOADLEV LINICAL COLLOCI. MR	40	100	40	26.0627	100 0080	2002	2010

100

60

40

35.8627

-120.8060

2003

2019

BRADLEY UNION SCHOOL WS

2700964-001

GAMA Department of Drinking Water Groundwater Quality Monitoring Network Wells

GAMA Groundwater Quality Monitoring Network Wells								
		W	ell Screen Info		Coord	linates	Monitoring Date Range	
GAMA Well ID	Water System Name	Top of Screen Depth (ft bgs)	Bottom of Screen Depth (ft bgs)	Screen Length (ft)	Latitude (NAD83)	Longitude (NAD83)	First Year	Last Year
2701063-001	RIVER RD WS #25	N/A	N/A	60	36.4591	-121.3778	1986	2018
2701068-001	IVERSON & JACKS APTS WS	N/A	N/A	N/A	36.5582	-121.4733	2003	2018
2701109-001	ASSOCIATED TAGLINE WS	N/A	N/A	N/A	36.7156	-121.7191	1987	2018
2701142-001 2701151-001	HORN WS GREEN VALLEY FLORAL WS	54 512	100 600	46 88	36.5866	-121.7118 -121.5311	2012 2004	2019 2018
2701152-001	FLORICULTURA PACIFIC WS	508	580	72	36,5931	-121.5390	2004	2018
2701153-001	GROWERS TRANSPLANTING WS	410	485	75	36,7355	-121.6848	2000	2018
2701171-002	CHEVRON OIL FIELD WS	N/A	N/A	N/A	35.9581	-120.8635	2007	2018
2701176-001	SOLEDAD MISSION WS	106	N/A	N/A	36.4049	-121.3559	2007	2018
2701183-002	SAN ANTONIO LAKE PARK NORTH WS	300	520	220	35.9581	-120.8635	2003	2018
2701187-001	AERA ENERGY LLC WS	N/A	N/A	N/A	35.9522	-120.8621	2004	2018
2701202-002	CAL AM WATER COMPANY - CHUALAR	750	900	150	36.5703	-121.5150	1998	2018
2701202-004 2701214-001	CAL AM WATER COMPANY - CHUALAR FIRESTONE BUSINESS PARK WS	760	900 548	140 24	36.5696 36.6267	-121.5137 -121.5929	2002	2019 2015
2701214-001	FIRESTONE BUSINESS PARK WS	517	545	24	36.6267	-121.5930	2003	2018
2701231-001	PRUNEDALE SHOPPING CENTER WS	204	252	48	36.8027	-121.6657	2005	2010
2701232-001	OLD NATIVIDAD RD WS #01	390	490	100	36.6591	-121.6229	1986	2018
2701241-001	ENCINAL RD WS #01	N/A	N/A	N/A	36.6218	-121.5044	1986	2018
2701254-001	CARMEL RIVIERA MWC	N/A	N/A	N/A	36.5778	-121.7166	2007	2018
2701325-001	SAN CLEMENTE RANCHO WS	N/A	N/A	N/A	36.5042	-121.5067	2002	2018
2701364-001	PEDRAZZI MWC	474	508	34	36.6000	-121.6300	1999	2018
2701423-001 2701423-002	ECHO VALLEY RD WS #05 ECHO VALLEY RD WS #05	309 280	345 380	36 100	35.9522 36.8255	-120.8621 -121.6580	1987 2002	2018 2018
2701423-002	MONTEREY DUNES MWA	1323	1383	60	36.7694	-121.0000	2002	2018
2701452-004	MONTEREY DUNES MWA	N/A	N/A	N/A	36,7582	-121.8010	2008	2018
2701498-001	HARBOR VIEW WA	220	230	10	36.8173	-121.7153	1997	2018
2701515-001	MOSS LANDING HARBOR WS	400	750	350	36.7988	-121.7457	1986	2018
2701542-001	GONZALES GAS STATION WS	332	392	60	36.5231	-121.4845	2004	2016
2701550-001	GOLDEN STATE VINTNERS WS	95	215	120	36.4277	-121.3076	2002	2017
2701550-002	GOLDEN STATE VINTNERS WS	N/A	N/A	N/A	36.4273	-121.3068	2005	2019
2701570-001 2701575-001	LOS CARNEROS MWA BUENA VISTA CENTER WS	274 N/A	334 N/A	60 N/A	36.7312 36.5889	-121.6167 -121.6048	2002	2018 2015
2701575-001	BUENA VISTA CENTER WS	N/A N/A	N/A N/A	N/A N/A	36,5903	-121.6040	2018	2015
2701579-003	CAMPHORA STATION WS	N/A	N/A	N/A	36.4521	-121.3683	2008	2018
2701589-006	SUNNY ACRES MWS	145	265	120	36.5913	-121.4497	2003	2018
2701622-001	NOT AVAILABLE	N/A	N/A	N/A	36.8000	-121.7000	2001	2017
2701630-001	PRUNEDALE CHEVRON WS	N/A	N/A	N/A	36.5889	-121.6048	2001	2018
2701647-001	GREEN ACRES WA	220	260	40	36.7963	-121.7324	1998	2019
2701670-001	LANGLEY/VALLE PACIFICO WS	N/A	N/A	120	36.8174	-121.6621	2000	2015
2701670-002	LANGLEY/VALLE PACIFICO WS	N/A	N/A	40	36.8174	-121.6622	2002	2018
2701676-001 2701681-001	SAN LUCAS WD EXXON STATION WS	35	70 200	35 160	36.1070 36.5780	-121.0101 -121.7269	2001	2016 2018
2701683-001	MOSS LANDING MWC	40	554	245	36,5571	-121.7209	2005	2018
2701740-001	BLUFFS WS	271	309	38	36.6389	-121.7046	1987	2018
2701740-012	BLUFFS WS	N/A	N/A	N/A	36.6258	-121.6869	2008	2018
2701742-001	CALIFORNIA ORCHARD WS	176	252	76	36.2632	-121.1802	2004	2018
2701742-006	CALIFORNIA ORCHARD WS	N/A	N/A	N/A	36.2634	-121.1807	2004	2018
2701789-001	HOLLY HILLS MWC	340	660	320	36.7958	-121.6410	1999	2018
2701795-001	NOT AVAILABLE	N/A 210	N/A 251	N/A 32	36,7900	-121.6200	1987	2015
2701814-001 2701820-001	PRUNEDALE PLAZA WS CORDA RD WS	219	251 560	32 40	36.8004 36.5181	-121.6659 -121.4604	2007	2019 2018
2701820-001	ROBLEY PROPERTY MWS	335	585	250	36,5571	-121.4004	2003	2018
2701822-002	ROBLEY PROPERTY MWS	320	390	70	36.5574	-121.7436	2003	2018
2701825-001	GLEN OAKS WS #01	N/A	N/A	N/A	36.5181	-121.4604	2003	2015
2701897-001	BERRY DR WS #02	408	600	192	36.6000	-121.6317	1998	2018
2701922-001	NATIVIDAD RD WS #02	350	470	120	36.7312	-121.6167	2003	2018
2701926-001	MORO RD WS #09	445	485	40	36.8030	-121.7005	2002	2016
2701926-002	MORO RD WS #09	418	428	10	36.8040	-121.6598	2003	2019
2701926-003	MORO RD WS #09	395	455	60	36,8080	-121.6550	2002	2019
2701929-002 2701931-001	COUNTRY MEADOWS MWC MATSUI NURSERY WS	240 N/A	438 N/A	198 N/A	36.7654 36.6190	-121.6562 -121.5188	2000	2019 2015
2701931-001	MATSUI NURSERY WS	N/A N/A	N/A N/A	N/A N/A	36.6214	-121.5166	2002	2015
2701935-001	MOUNT TORO RANCHOS MWA	N/A	N/A	N/A	36.5440	-121.6697	2004	2018
2701935-002	MOUNT TORO RANCHOS MWA	550	830	280	36.5438	-121.6698	2003	2018

GAMA Groundwater Quality Monitoring Network Wells Well Screen Info Coordinates Monitor								
		Well Screen Info			Coord	linates	Monitoring Date Range	
GAMA Well ID	Water System Name	Top of Screen Depth (ft bgs)	Bottom of Screen Depth (ft bgs)	Screen Length (ft)	Latitude (NAD83)	Longitude (NAD83)	First Year	Last Yea
2701959-001	TIERRA VISTA MWC	230	250	20	36.5545	-121.6961	1997	2019
2702003-001	VIERRA MEADOWS MWC	220	320	100	36.7971	-121.6534	2003	2019
2702003-002	VIERRA MEADOWS MWC	220	320	100	36.7972	-121.6544	2003	2019
2702004-001	CAL AM WATER COMPANY - RALPH LANE	N/A	N/A	100	36.7625	-121.6667	2003	2019
2702007-001	VIERRA ESTATES WS	280	440	160	36.7971	-121.6534	2000	2018
2702007-007	VIERRA ESTATES WS	320	360	40	36.8023	-121.6301	2000	2018
2702021-003	SALINAS TRANSPLANT WS	45	159	114	36.7791	-121.5898	2007	2018
2702030-001 2702073-002	CYPRESS COMMUNITY CHURCH WS SAN MIGUEL WS #22	370	430 444	60 50	36.5815 36.8129	-121.7276 -121.6708	2011 2004	2019 2018
2702094-001	BLACKIE RD WS #18	305	365	60	36,7728	-121.6826	2004	2010
2702121-001	ROSEHART INDUSTRIAL PARK WS	520	572	52	36.6961	-121.7007	2000	2018
2702135-001	FOOTHILL WA	N/A	N/A	N/A	36,5606	-121.5628	2005	2019
2702141-001	NOT AVAILABLE	N/A	N/A	N/A	35.8600	-120.8000	2017	2017
2702161-001	NOT AVAILABLE	N/A	N/A	N/A	36.6300	-121.5400	1987	2017
2702180-001	GRAVES SCHOOL WS	370	430	60	36.6961	-121.7007	1987	2018
2702198-002	FOOTHILL ESTATES WS	216	396	180	36.8129	-121.6708	2002	2018
2702202-001	GROWERS COMPANY INC WS	481	526	45	36.6071	-121.5519	2002	2018
2702226-002	CDFW ELKHORN SLOUGH ECOLOGICAL RESERVE	350	490	140	36.8240	-121.7358	1990	2018
2702229-001	MANZANITA PARK WS	N/A	N/A	N/A	36.8045	-121.6729	2004	2018
2702254-002	PACIFIC VALLEY SCHOOL WS	25	60	35	36.6625	-121.5528	2003	2018
2702256-001	NORTH SHORE ESTATES WS	N/A	N/A	N/A	36.8045	-121.6729	2004	2018
2702259-004	LHOIST NORTH AMERICA WS	260	500	240	36.7406	-121.6094	2006	2018
2702315-001	CORRAL DE TIERRA COUNTRY CLUB WS	180	440	260	36.5679	-121.7272	2004	2018
2702317-001	MISSION SCHOOL WS	215	245	30	36.3905	-121.3653	2003	2019
2702320-001	HITCHCOCK RD WS #01	560	640	80	36.6643	-121.7008	2003	2018
2702322-001	CAPTAIN COOPER SCHOOL WS	N/A	N/A	10	36.5679	-121.7272	2004	2018
2702368-001 2702374-001	PRUNETREE SHOPPING CENTER WS COUNTRYSIDE ESTATES MWC	320	440 390	120	36.7951 36.7953	-121.6634 -121.6677	2002	2018
2702374-001	LA TAPATIA TAQUERIA WS	228	260	60 32	36.8034	-121.6670	2003	2018
2702388-001	ROYAL OAK PLACE WS	420	480	60	36.8352	-121.6735	2008	2010
2702388-002	ROYAL OAK PLACE WS	420 N/A	N/A	10	36.8351	-121.6739	2002	2019
2702409-001	EL CAMINO WC INC	340	510	170	36.8352	-121.6735	2005	2018
2702412-001	DOLE FRESH VEGETABLES WS	400	800	400	36.4524	-121.3564	2008	2018
2702412-002	DOLE FRESH VEGETABLES WS	390	540	150	36.4532	-121.3568	2008	2018
2702431-001	FOOTHILL RD WS #01	200	N/A	N/A	36.5604	-121.5639	2003	2019
2702439-001	WOODLAND HEIGHTS MWC	240	440	200	36.7893	-121.6341	2002	2018
2702444-001	RIVER RD WS #28	430	N/A	N/A	36.5967	-121.6242	2004	2018
2702452-001	EL CAMINO MACHINE & WELDING WS	N/A	N/A	N/A	36.6367	-121.6019	2004	2018
2702452-002	EL CAMINO MACHINE & WELDING WS	N/A	N/A	N/A	36.6365	-121.6018	2013	2018
2702453-001	MARINA LANDFILL WS	40	250	210	36.7127	-121.7691	2002	2019
2702456-001	MONTEREY ONE WATER (FORMERLY MRWPCA)	N/A	N/A	N/A	36.7054	-121.7692	2017	2018
2702456-002	MONTEREY ONE WATER (FORMERLY MRWPCA)	670	750	80	36.6365	-121.6018	2004	2017
2702466-001	SAN VICENTE MWC	60	100	40	36.6367	-121.6019	2003	2018
2702466-002	SAN VICENTE MWC	60	100	40	36.4073	-121.2673	2003	2018
2702475-001	FREE WILL BAPTIST CHURCH WS	245	285	40	36.7042	-121.5824	2002	2019
2702482-001	COLOR SPOT NURSERY WS #02	300	400	100	36.7456	-121.6866 -121.6322	2003	2018
2702484-003 2702486-001	GROWERS SERVICE ASSN WS (ICE) BERNARDO RD WS #02	604 100	632 180	28 80	36.6511 36.0068	-121.6322	2003 2004	2018
2702480-001 2702490-001	CENTRAL BAY HIGH SCHOOL WS	260	160 N/A	N/A	36,0006	-120.9182	2004	2019
2702495-001	FOLKTALE WINERY WS	200 N/A	N/A	20	36,4524	-121.3564	2002	2018
2702537-001	PREMIUM PACKING INC WS	36	420	384	36.7529	-121.6563	2000	2018
2702544-001	SANCTUARY BIBLE CHURCH WS	50	N/A	N/A	36.7529	-121.6563	2008	2018
2702554-001	HIDDEN CANYON RANCH MWC	N/A	N/A	N/A	36.7906	-121.6184	2003	2019
2702554-002	HIDDEN CANYON RANCH MWC	N/A	N/A	N/A	36.7866	-121.6197	2002	2019
2702572-001	ALBA WS	600	800	200	36.6090	-121.5334	2003	2017
2702608-001	THIMIO MWC	500	550	50	36.7906	-121.6184	2001	2019
2702626-001	NOT AVAILABLE	N/A	N/A	N/A	36.5361	-121.4026	2011	2018
2702704-001	HARRIS RD WS #10	N/A	N/A	N/A	36.6242	-121.6300	2009	2019
2710001-001	ALCO WATER SERVICE	310	750	440	36.6853	-121.6042	1988	2019
2710001-002	ALCO WATER SERVICE	N/A	N/A	200	36.6824	-121.6135	1982	2018
				300	36.6904	-121.6261	1000	2010
2710001-004	ALCO WATER SERVICE	393	693				1982	2018
	ALCO WATER SERVICE ALCO WATER SERVICE ALCO WATER SERVICE	393 310 300	693 660 620	350 320	36.6824 36.6963	-121.6092	1992 1993 1991	2018 2018 2018

	GAMA Groundwa	C	linates	Monitoring Date Range				
GAMA Well ID	Water System Name	Top of	Bottom of Screen Depth (ft bgs)	Screen Length (ft)	Latitude (NAD83)	Longitude (NAD83)	First Year	Last Yea
2710006-004	CAL AM WATER COMPANY - AMBLER PARK	160	360	200	36.5746	-121.7254	1984	2016
2710006-005	CAL AM WATER COMPANY - AMBLER PARK	160	420	260	36.5735	-121.7269	1990	2018
2710006-006	CAL AM WATER COMPANY - AMBLER PARK	160	460	300	36.5750	-121.7249	1994	2019
2710007-003	GONZALES, CITY OF	641	671	30	36.5042	-121.4376	1987	2015
2710007-004	GONZALES, CITY OF	400	660	260	36.4990	-121.4359	1987	2019
2710007-005	GONZALES, CITY OF	450	650	200	36.5181	-121.4380	1988	2019
2710007-006	GONZALES, CITY OF	440	660	220	36.5056	-121.4464	1998	2019
2710009-006	CWSC KING CITY	130	202	72	36.2016	-121.1334	1982	2018
2710009-007	CWSC KING CITY	180	280	100	36.2115	-121.1352	1991	2018
2710009-008	CWSC KING CITY	125	200	75	36.2046	-121.1402	1994	2018
2710009-012	CWSC KING CITY	182	232	50	36.2115	-121.1386	2002	2018
2710010-005	CWSC SALINAS	380	530	150	36.7025	-121.6516	1982	2019
2710010-006	CWSC SALINAS	120	342	222	36.6746	-121.6413	1983	2019
2710010-008	CWSC SALINAS	475	534	59	36.6986	-121.6474	1983	2019
2710010-009	CWSC SALINAS	357	437	80	36.6611	-121.6607	1983	2019
2710010-014	CWSC SALINAS	420	489	69	36.7027	-121.6311	1982	2019
2710010-015	CWSC SALINAS	330	393	63	36.6508	-121.6201	1982	2019
2710010-017	CWSC SALINAS	451	517	66	36.6646	-121.6702	1983	2018
2710010-018	CWSC SALINAS	305	560	255	36.6781	-121.6301	1982	2019
2710010-019	CWSC SALINAS	360	504	144	36.6504	-121.6307	1982	2019
2710010-020	CWSC SALINAS	462	523	61	36.7026	-121.6635	1983	2019
2710010-022	CWSC SALINAS	398	600	202	36.7155	-121.6596	1983	2019
2710010-023	CWSC SALINAS	330	465	135	36.6702	-121.6795	1983	2019
2710010-024	CWSC SALINAS	380	530	150	36.7099	-121.6328	1983	2018
2710010-026	CWSC SALINAS	420	580	160	36.6975	-121.6670	1983	2019
2710010-027	CWSC SALINAS	350	540	190 250	36.6654	-121.6806	1984 1985	2018
2710010-029	CWSC SALINAS	360	610		36.6594	-121.6060		
2710010-030 2710010-037	CWSC SALINAS CWSC SALINAS	490 310	640 630	150 320	36.6883 36.7327	-121.6659 -121.6511	1986	2019 2018
2710010-037	CWSC SALINAS	420	640	220	36.7120	-121.6493	1902	2018
2710010-041	CWSC SALINAS	420	620	150	36.7611	-121.6139	1991	2018
2710010-046	CWSC SALINAS	415	475	60	36.7032	-121.6309	2002	2010
2710010-077	CWSC SALINAS	385	605	220	36.6551	-121.6488	2002	2018
2710011-006	SOLEDAD, CITY OF	580	710	130	36.4284	-121.3231	1987	2019
2710011-007	SOLEDAD, CITY OF	544	694	150	36.4234	-121.3215	1993	2019
2710011-008	SOLEDAD, CITY OF	450	600	150	36.4176	-121.3125	1994	2019
2710011-013	SOLEDAD, CITY OF	674	915	241	36.4391	-121.3332	2002	2019
2710011-014	SOLEDAD, CITY OF	540	750	210	38.4324	-121.3333	2004	2018
2710012-002	CWSC SALINAS HILLS	413	465	52	36.6049	-121.6394	1984	2018
2710012-003	CWSC SALINAS HILLS	410	730	320	36.6023	-121.6386	1983	2018
2710012-007	CWSC SALINAS HILLS	260	540	280	36.6065	-121.6988	1987	2018
2710012-009	CWSC SALINAS HILLS	360	740	380	36.6238	-121.6659	1991	2018
2710012-016	CWSC SALINAS HILLS	453	489	36	36.6002	-121.6317	2002	2018
2710012-017	CWSC SALINAS HILLS	N/A	N/A	N/A	36.6012	-121.6334	1997	2018
2710016-001	LITTLE BEAR WATER COMPANY	N/A	N/A	N/A	36.1928	-121.1325	1981	2019
2710016-002	LITTLE BEAR WATER COMPANY	147	193	46	36.1925	-121.1337	1983	2019
2710016-003	LITTLE BEAR WATER COMPANY	160	220	60	36.1883	-121.1253	1988	2019
2710019-001	CWSC OAK HILLS	300	600	300	36.7813	-121.7081	1982	2018
2710019-003	CWSC OAK HILLS	200	620	420	36.7754	-121.7221	1985	2018
2710021-003	CAL AM WATER COMPANY - TORO	N/A	N/A	396	36.5710	-121.7448	1987	2019
2710021-004	CAL AM WATER COMPANY - TORO	N/A	N/A	200	36.5709	-121.7445	1987	2019
2710023-002	TASCO SPRECKELS WATER COMPANY	390	452	62	36.6233	-121.6506	1995	2018
LT TOOLO OOL	CAMP ROBERTS - CALIFORNIA NATIONAL GUARD	N/A	N/A	50	35.8009	-120.7612	1985	2019
2710705-003				110	35 7059	400 7747	1000	0040
	CAMP ROBERTS - CALIFORNIA NATIONAL GUARD	120	260	140	35.7958	-120.7717	1999	2019
2710705-003		275	725	450	36.4758	-120.7717	1999	2019
2710705-003 2710705-015 2710850-005 2710850-006	CAMP ROBERTS - CALIFORNIA NATIONAL GUARD CORRECTIONAL TRAINING FACILITY - SOLEDAD CORRECTIONAL TRAINING FACILITY - SOLEDAD	275 475	725 775	450 300	36.4758 36.4734	-121.3729 -121.3756	1984 1993	2018 2019
2710705-003 2710705-015 2710850-005 2710850-006 2710850-007	CAMP ROBERTS - CALIFORNIA NATIONAL GUARD CORRECTIONAL TRAINING FACILITY - SOLEDAD CORRECTIONAL TRAINING FACILITY - SOLEDAD CORRECTIONAL TRAINING FACILITY - SOLEDAD	275 475 500	725 775 816	450 300 316	36.4758 36.4734 36.4712	-121.3729 -121.3756 -121.3778	1984 1993 1993	2019 2019
2710705-003 2710705-015 2710850-005 2710850-006	CAMP ROBERTS - CALIFORNIA NATIONAL GUARD CORRECTIONAL TRAINING FACILITY - SOLEDAD CORRECTIONAL TRAINING FACILITY - SOLEDAD	275 475	725 775	450 300	36.4758 36.4734	-121.3729 -121.3756	1984 1993	2018 2019

Appendix 7-E

Central Coast Ag Order 3.0 Monitoring and Reporting Program

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CENTRAL COAST REGION

MONITORING AND REPORTING PROGRAM ORDER NO. R3-2017-0002-01

TIER 1

DISCHARGERS ENROLLED UNDER CONDITIONAL WAIVER OF WASTE DISCHARGE REQUIREMENTS FOR DISCHARGES FROM IRRIGATED LANDS

This Monitoring and Reporting Program Order No. R3-2017-0002-01 (MRP) is issued pursuant to California Water Code (Water Code) sections 13267 and 13269, which authorize the California Regional Water Quality Control Board, Central Coast Region (hereafter Central Coast Water Board) to require preparation and submittal of technical and monitoring reports. Water Code section 13269 requires a waiver of waste discharge requirements to include as a condition the performance of monitoring and the public availability of monitoring results. *Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands*, Order No. R3-2017-0002 (Order) includes criteria and requirements for Tier 1 Dischargers enrolled under the Order. A summary of the requirements is shown below.

SUMMARY OF MONITORING AND REPORTING REQUIREMENTS FOR TIER 1:

Part 1: Surface Receiving Water Monitoring and Reporting (cooperative or individual) Part 2: Groundwater Monitoring and Reporting (cooperative or individual)

Pursuant to Water Code section 13269(a)(2), monitoring requirements must be designed to support the development and implementation of the waiver program, including, but not limited to, verifying the adequacy and effectiveness of the waiver's conditions. The monitoring and reports required by this MRP are to evaluate effects of discharges of waste from irrigated agricultural operations and individual farms/ranches on waters of the state and to determine compliance with the Order.

MONITORING AND REPORTING BASED ON TIERS

The Order and MRP include criteria and requirements for three tiers, based upon those characteristics of individual farms/ranches at the operation that present the highest level of waste discharge or greatest risk to water quality. Dischargers must meet conditions of the Order and MRP for the appropriate tier that applies to their land and/or the individual farm/ranch. Within a tier, Dischargers comply with requirements based on the

specific level of discharge and threat to water quality from individual farms/ranches. The lowest tier, Tier 1, applies to dischargers who discharge the lowest level of waste (amount or concentration) or pose the lowest potential to cause or contribute to an exceedance of water quality standards in waters of the State or of the United States. The highest tier, Tier 3, applies to dischargers who discharge the highest level of waste or pose the greatest potential to cause or contribute to an exceedance of water quality standards in waters of the State. Tier 2 applies to dischargers whose discharge has a moderate threat to water quality. Water quality is defined in terms of regional, state, or federal numeric or narrative water quality standards. Per the Order, Dischargers may submit a request to the Executive Officer to approve transfer to a lower tier. If the Executive Officer approves a transfer to a lower tier, any interested person may request that the Central Coast Water Board conduct a review of the Executive Officer's determination.

PART 1. SURFACE RECEIVING WATER MONITORING AND REPORTING REQUIREMENTS

The surface receiving water monitoring and reporting requirements described herein are generally a continuation of the surface receiving water monitoring and reporting requirements of Monitoring and Reporting Program Order No. 2012-0011-01, as revised August 22, 2016, with the intent of uninterrupted regular monitoring and reporting during the transition from Order No. R3-2012-0011-01 to Order No. R3-2017-0002-01.

Monitoring and reporting requirements for surface receiving water identified in Part 1.A. and Part 1.B. apply to Tier 1 Dischargers. Surface receiving water refers to water flowing in creeks and other surface waters of the State. Surface receiving water monitoring may be conducted through a cooperative monitoring program on behalf of Dischargers, or Dischargers may choose to conduct surface receiving water monitoring and reporting individually. Key monitoring and reporting requirements for surface receiving water are shown in Tables 1 and 2.

A. Surface Receiving Water Quality Monitoring

- Dischargers must elect a surface receiving water monitoring option (cooperative monitoring program or individual receiving water monitoring) to comply with surface receiving water quality monitoring requirements, and identify the option selected on the Notice of Intent (NOI).
- 2. Dischargers are encouraged to choose participation in a cooperative monitoring program (e.g., the existing Cooperative Monitoring Program or a similar program) to comply with receiving water quality monitoring requirements. Dischargers not participating in a cooperative monitoring program must conduct surface receiving water quality monitoring individually that achieves the same purpose.

3. Dischargers (individually or as part of a cooperative monitoring program) must conduct surface receiving water quality monitoring to a) assess the impacts of their waste discharges from irrigated lands to receiving water, b) assess the status of receiving water quality and beneficial use protection in impaired waterbodies dominated by irrigated agricultural activity, c) evaluate status, short term patterns and long term trends (five to ten years or more) in receiving water quality, d) evaluate water quality impacts resulting from agricultural discharges (including but not limited to tile drain discharges), e) evaluate stormwater quality, f) evaluate condition of existing perennial, intermittent, or ephemeral streams or riparian or wetland area habitat, including degradation resulting from erosion or agricultural discharges of waste, and g) assist in the identification of specific sources of water quality problems.

Surface Receiving Water Quality Sampling and Analysis Plan

- 4. By March 1, 2018, or as directed by the Executive Officer, Dischargers (individually or as part of a cooperative monitoring program) must submit a surface receiving water quality Sampling and Analysis Plan (SAAP) and Quality Assurance Project Plan (QAPP); this requirement is satisfied if an approved SAAP and QAPP addressing all surface receiving water quality monitoring requirements described in this Order has been submitted pursuant to Order No. R3-2012-0011 and associated Monitoring and Reporting Programs. Dischargers (or a third party cooperative monitoring program) must develop the Sampling and Analysis Plan to describe how the proposed monitoring will achieve the objectives of the MRP and evaluate compliance with the Order. The Sampling and Analysis Plan may propose alternative monitoring site locations, adjusted monitoring parameters, and other changes as necessary to assess the impacts of waste discharges from irrigated lands to receiving water. The Executive Officer must approve the Sampling and Analysis Plan and QAPP.
- The Sampling and Analysis Plan must include the following minimum required components:
 - a. Monitoring strategy to achieve objectives of the Order and MRP;
 - b. Map of monitoring sites with GIS coordinates;
 - Identification of known water quality impairments and impaired waterbodies per the 2010 Clean Water Act 303(d) List of Impaired Waterbodies (List of Impaired Waterbodies);
 - Identification of beneficial uses and applicable water quality standards;
 - e. Identification of applicable Total Maximum Daily Loads;
 - f. Monitoring parameters;
 - Monitoring schedule, including description and frequencies of monitoring events;

- h. Description of data analysis methods;
- 6. The QAPP must include receiving water and site-specific information, project organization and responsibilities, and quality assurance components of the MRP. The QAPP must also include the laboratory and field requirements to be used for analyses and data evaluation. The QAPP must contain adequate detail for project and Water Board staff to identify and assess the technical and quality objectives, measurement and data acquisition methods, and limitations of the data generated under the surface receiving water quality monitoring. All sampling and laboratory methodologies and QAPP content must be consistent with U.S. EPA methods, State Water Board's Surface Water Ambient Monitoring Program (SWAMP) protocols and the Central Coast Water Board's Central Coast Ambient Monitoring Program (CCAMP). Following U.S. EPA guidelines¹ and SWAMP templates², the receiving water quality monitoring QAPP must include the following minimum required components:
 - a. Project Management. This component addresses basic project management, including the project history and objectives, roles and responsibilities of the participants, and other aspects.
 - b. Data Generation and Acquisition. This component addresses all aspects of project design and implementation. Implementation of these elements ensures that appropriate methods for sampling, measurement and analysis, data collection or generation, data handling, and quality control activities are employed and are properly documented. Quality control requirements are applicable to all the constituents sampled as part of the MRP, as described in the appropriate method.
 - c. Assessment and Oversight. This component addresses the activities for assessing the effectiveness of the implementation of the project and associated QA and QC activities. The purpose of the assessment is to provide project oversight that will ensure that the QA Project Plan is implemented as prescribed.
 - d. Data Validation and Usability. This component addresses the quality assurance activities that occur after the data collection, laboratory analysis and data generation phase of the project is completed. Implementation of these elements ensures that the data conform to the specified criteria, thus achieving the MRP objectives.

¹ USEPA. 2001 (2006) USEPA Requirements for Quality Assurance Project Plans (QA/R-5) Office of Environmental Information, Washington, D.C. USEPA QA/R-5 ² http://www.environmental.org/assurance/environment/pole shtmetting.

http://waterboards.ca.gov/water_issues/programs/swamp/tools.shtml#qa

- The Central Coast Water Board may conduct an audit of contracted laboratories at any time in order to evaluate compliance with the QAPP.
- 8. The Sampling and Analysis Plan and QAPP, and any proposed revisions are subject to approval by the Executive Officer. The Executive Officer may also revise the Sampling and Analysis Plan, including adding, removing, or changing monitoring site locations, changing monitoring parameters, and other changes as necessary to assess the impacts of waste discharges from irrigated lands to receiving water.

Surface Receiving Water Quality Monitoring Sites

9. The Sampling and Analysis Plan must, at a minimum, include monitoring sites to evaluate waterbodies identified in Table 1, unless otherwise approved by the Executive Officer. The Sampling and Analysis Plan must include sites to evaluate receiving water quality impacts most directly resulting from areas of agricultural discharge (including areas receiving tile drain discharges). Site selection must take into consideration the existence of any long term monitoring sites included in related monitoring programs (e.g. CCAMP and the existing CMP). Sites may be added or modified, subject to prior approval by the Executive Officer, to better assess the pollutant loading from individual sources or the impacts to receiving waters caused by individual discharges. Any modifications must consider sampling consistency for purposes of trend evaluation.

Surface Receiving Water Quality Monitoring Parameters

- The Sampling and Analysis Plan must, at a minimum, include the following types of monitoring and evaluation parameters listed below and identified in Table 2:
 - a. Flow Monitoring;
 - b. Water Quality (physical parameters, metals, nutrients, pesticides);
 - c. Toxicity (water and sediment);
 - d. Assessment of Benthic Invertebrates.
- 11. All analyses must be conducted at a laboratory certified for such analyses by the State Department of Public Health (CDPH) or at laboratories approved by the Executive Officer. Unless otherwise noted, all sampling, sample preservation, and analyses must be performed in accordance with the latest edition of *Test Methods for Evaluating Solid Waste*, SW-846, U.S. EPA, and analyzed as specified herein by the above analytical methods and reporting limits indicated. Certified laboratories can be found at the web link: <u>http://www.cdph.ca.gov/certlic/labs/Documents/ELAPLablist.xls</u>

-6-

MRP No. R3-2017-0002-01 (Tier 1) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

- 12. Water quality and flow monitoring is used to assess the sources, concentrations, and loads of waste discharges from individual farms/ranches and groups of Dischargers to surface waters, to evaluate impacts to water quality and beneficial uses, and to evaluate the short term patterns and long term trends in receiving water quality. Monitoring data must be compared to existing numeric and narrative water quality objectives.
- 13. Toxicity testing is to evaluate water quality relative to the narrative toxicity objective. Water column toxicity analyses must be conducted on 100% (undiluted) sample. At sites where persistent unresolved toxicity is found, the Executive Officer may require concurrent toxicity and chemical analyses and a Toxicity Identification Evaluation (TIE) to identify the individual discharges causing the toxicity.

Surface Receiving Water Quality Monitoring Frequency and Schedule

- 14. The Sampling and Analysis Plan must include a schedule for sampling. Timing, duration, and frequency of monitoring must be based on the land use, complexity, hydrology, and size of the waterbody. Table 2 includes minimum monitoring frequency and parameter lists. Agricultural parameters that are less common may be monitored less frequently. Modifications to the receiving water quality monitoring parameters, frequency, and schedule may be submitted for Executive Officer consideration and approval. At a minimum, the Sampling and Analysis Plan schedule must consist of monthly monitoring of common agricultural parameters in major agricultural areas, including two major storm events during the wet season (October 1 – April 30).
- 15. Storm event monitoring must be conducted within 18 hours of storm events, preferably including the first flush run-off event that results in significant increase in stream flow. For purposes of this MRP, a storm event is defined as precipitation producing onsite runoff (surface water flow) capable of creating significant ponding, erosion or other water quality problem. A significant storm event will generally result in greater than 1-inch of rain within a 24-hour period.
- Dischargers (individually or as part of a cooperative monitoring program) must perform receiving water quality monitoring per the Sampling and Analysis Plan and QAPP approved by the Executive Officer.

B. Surface Receiving Water Quality Reporting

Surface Receiving Water Quality Data Submittal

 Dischargers (individually or as part of a cooperative monitoring program) must submit water quality monitoring data to the Central Coast Water Board electronically, in a format specified by the Executive Officer and compatible with SWAMP/CCAMP electronic submittal guidelines, each January 1, April 1, July 1, and October 1.

-7-

Surface Receiving Water Quality Monitoring Annual Report

- By July 1, 2017, and every July 1 annually thereafter, Dischargers (individually or as part of a cooperative monitoring program) must submit an Annual Report, electronically, in a format specified by the Executive Officer including the following minimum elements:
 - a. Signed Transmittal Letter;
 - b. Title Page;
 - c. Table of Contents;
 - d. Executive Summary;
 - Summary of Exceedance Reports submitted during the reporting period;
 - f. Monitoring objectives and design;
 - g. Monitoring site descriptions and rainfall records for the time period covered;
 - h. Location of monitoring sites and map(s);
 - Tabulated results of all analyses arranged in tabular form so that the required information is readily discernible;
 - Summary of water quality data for any sites monitored as part of related monitoring programs, and used to evaluate receiving water as described in the Sampling and Analysis Plan.
 - k. Discussion of data to clearly illustrate compliance with the Order and water quality standards;
 - Discussion of short term patterns and long term trends in receiving water quality and beneficial use protection;
 - Evaluation of pesticide and toxicity analyses results, and recommendation of candidate sites for Toxicity Identification Evaluations (TIEs);
 - Identification of the location of any agricultural discharges observed discharging directly to surface receiving water;
 - Laboratory data submitted electronically in a SWAMP/CCAMP comparable format;
 - p. Sampling and analytical methods used;
 - q. Copy of chain-of-custody forms:
 - r. Field data sheets, signed laboratory reports, laboratory raw data;
 - s. Associated laboratory and field quality control samples results;
 - t. Summary of Quality Assurance Evaluation results;

- Specify the method used to obtain flow at each monitoring site during each monitoring event;
- Electronic or hard copies of photos obtained from all monitoring sites, clearly labeled with site ID and date;
- w. Conclusions.

PART 2. GROUNDWATER MONITORING AND REPORTING REQUIREMENTS

Groundwater monitoring may be conducted through a cooperative monitoring and reporting program on behalf of growers, or Dischargers may choose to conduct groundwater monitoring and reporting individually. Qualifying cooperative groundwater monitoring and reporting programs must implement the groundwater monitoring and reporting requirements described in this Order, unless otherwise approved by the Executive Officer. An interested person may seek review by the Central Coast Water Board of the Executive Officer's approval or denial of a cooperative groundwater monitoring and reporting program.

Key monitoring and reporting requirements for groundwater are shown in Table 3.

A. Groundwater Monitoring

- Dischargers must sample private domestic wells and the primary irrigation well on their farm/ranch to evaluate groundwater conditions in agricultural areas, identify areas at greatest risk for nitrogen loading and exceedance of drinking water standards, and identify priority areas for follow up actions.
- 2. Dischargers must sample at least one groundwater well for each farm/ranch on their operation, including groundwater wells that are located within the property boundary of the enrolled county assessor parcel numbers (APNs). For farms/ranches with multiple groundwater wells, Dischargers must sample all domestic wells and the primary irrigation well. For the purposes of this MRP, a "domestic well" is any well that is used or may be used for domestic use purposes, including any groundwater well that is connected to a residence, workshop, or place of business that may be used for human consumption, cooking, or sanitary purposes. Groundwater monitoring parameters must include well screen interval depths (if available), general chemical parameters, and general cations and anions listed in Table 3.
- Dischargers must conduct two rounds of monitoring of required groundwater wells during calendar year 2017; one sample collected during spring (March -June) and one sample collected during fall (September - December).
- Groundwater samples must be collected by a qualified third party (e.g., consultant, technician, person conducting cooperative monitoring) using proper sampling methods, chain-of-custody, and quality assurance/quality

> control protocols. Groundwater samples must be collected at or near the well head before the pressure tank and prior to any well head treatment. In cases where this is not possible, the water sample must be collected from a sampling point as close to the pressure tank as possible, or from a cold-water spigot located before any filters or water treatment systems.

- 5. Laboratory analyses for groundwater samples must be conducted by a State certified laboratory according to U.S. EPA approved methods; unless otherwise noted, all monitoring, sample preservation, and analyses must be performed in accordance with the latest edition of *Test Methods for Evaluating Solid Waste*, SW-846, United States Environmental Protection Agency, and analyzed as specified herein by the above analytical methods and reporting limits indicated. Certified laboratories can be found at the web link below: http://www.waterboards.ca.gov/centralcoast/water_issues/programs/ag_waive rs/docs/resources4growers/2016_04_11_labs.pdf
- 6. If a discharger determines that water in any domestic well exceeds 10 mg/L of nitrate as N, the discharger or third party must provide notice to the Central Coast Water Board within 24 hours of learning of the exceedance. For domestic wells on a Discharger's farm/ranch that exceed 10 mg/L nitrate as N, the Discharger must provide written notification to the users within 10 days of learning of the exceedance and provide written confirmation of the notification to the Central Coast Water Board.

The drinking water notification must include the statement that the water poses a human health risk due to elevated nitrate concentration, and include a warning against the use of the water for drinking or cooking. In addition, Dischargers must also provide prompt written notification to any new well users (e.g. tenants and employees with access to the affected well), whenever there is a change in occupancy.

For all other domestic wells not on a Discharger's farm/ranch but that may be impacted by nitrate, the Central Coast Water Board will notify the users promptly.

The drinking water notification and confirmation letters required by this Order are available to the public.

B. Groundwater Reporting

- Within 60 days of sample collection, Dischargers must coordinate with the laboratory to submit the following groundwater monitoring results and information, electronically, using the Water Board's GeoTracker electronic deliverable format (EDF):
 - a. GeoTracker Ranch Global Identification Number

- b. Field point name (Well Name)
- c. Field Point Class (Well Type)
- d. Latitude
- e. Longitude
- f. Sample collection date
- g. Analytical results
- Well construction information (e.g., total depth, screened intervals, depth to water), as available
- Dischargers must submit groundwater well information required in the electronic Notice of Intent (eNOI) for each farm/ranch and update the eNOI to reflect changes in the farm/ranch information within 30 days of the change. Groundwater well information reported on the eNOI includes, but is not limited to:
 - a. Number of groundwater wells present at each farm/ranch
 - b. Identification of any groundwater wells abandoned or destroyed
 - (including method destroyed) in compliance with the Order c. Use for fertigation or chemigation
 - d. Presence of back flow prevention devices
 - e. Number of groundwater wells used for agricultural purposes
 - Number of groundwater wells used for or may be used for domestic use purposes (domestic wells).

PART 3. GENERAL MONITORING AND REPORTING REQUIREMENTS

A. Submittal of Technical Reports

 Dischargers must submit reports in a format specified by the Executive Officer. A transmittal letter must accompany each report, containing the following penalty of perjury statement signed by the Discharger or the Discharger's authorized agent:

"In compliance with Water Code §13267, I certify under penalty of perjury that this document and all attachments were prepared by me, or under my direction or supervision following a system designed to assure that qualified personnel properly gather and evaluate the information submitted. To the best of my knowledge and belief, this document and all attachments are true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment".

2. If the Discharger asserts that all or a portion of a report submitted pursuant to this Order is subject to an exemption from public disclosure (e.g. trade secrets or secret processes), the Discharger must provide an explanation of how those portions of the reports are exempt from public disclosure. The Discharger must clearly indicate on the cover of the report (typically an electronic submittal) that the Discharger asserts that all or a portion of the report is exempt from public disclosure, submit a complete report with those portions that are asserted to be exempt in redacted form, submit separately (in a separate electronic file) unredacted pages (to be maintained separately by staff). The Central Coast Water Board staff will determine whether any such report or portion of a report qualifies for an exemption from public disclosure, the Central Coast Water Board staff disagrees with the asserted exemption from public disclosure, the Central Coast Water Board staff will notify the Discharger prior to making such report or portions of such report available for public inspection.

B. Central Coast Water Board Authority

- Monitoring reports are required pursuant to section 13267 of the California Water Code. Pursuant to section 13268 of the Water Code, a violation of a request made pursuant to section 13267 may subject you to civil liability of up to \$1000 per day.
- The Water Board needs the required information to determine compliance with Order No.R3-2017-0002. The evidence supporting these requirements is included in the findings of Order No.R3-2017-0002.

John M. Robertson Executive Officer

March 8, 2017

Date

Table 1. Major Waterbodies in Agricultural Areas¹

Hydrologic SubArea	Waterbody Name	Hydrologic SubArea	Waterbody Name
30510	Pajaro River	30920	Quail Creek
30510	Salsipuedes Creek	30920	Salinas Reclamation Canal
30510	Watsonville Slough	31022	Chorro Creek
30510	Watsonville Creek ²	31023	Los Osos Creek
30510	Beach Road Ditch ²	31023	Warden Creek
30530	Carnadero Creek	31024	San Luis Obispo Creek
30530	Furlong Creek ²	31024	Prefumo Creek
30530	Llagas Creek	31031	Arroyo Grande Creek
30530	Miller's Canal	31031	Los Berros Creek
30530	San Juan Creek	31210	Bradley Canyon Creek
30530	Tesquisquita Slough	31210	Bradley Channel
30600	Moro Cojo Slough	31210	Green Valley Creek
30910	Alisal Slough	31210	Main Street Canal
30910	Blanco Drain	31210	Orcutt Solomon Creek
30910	Old Salinas River	31210	Oso Flaco Creek
30910	Salinas River (below Gonzales Rd.)	31210	Little Oso Flaco Creek
30920	Salinas River (above Gonzales Rd. and below Nacimiento R.)	31210	Santa Maria River
30910	Santa Rita Creek ²	31310	San Antonio Creek ²
30910	Tembladero Slough	31410	Santa Ynez River
30920	Alisal Creek	31531	Bell Creek
30920	Chualar Creek	31531	Glenn Annie Creek
30920	Espinosa Slough	31531	Los Carneros Creek ²
30920	Gabilan Creek	31534	Arroyo Paredon Creek
30920	Natividad Creek	31534	Franklin Creek

¹ At a minimum, monitoring sites must be included for these waterbodies in agricultural events approved by the Executive Officer. Monitoring sites may be proposed for addition or modification to better assess the impacts of waste discharges from irrigated lands to surface water. Dischargers choosing to comply with surface receiving water quality monitoring, individually (not part of a cooperative monitoring program) must only monitor sites for waterbodies receiving the discharge.

Table 2. Surface Receiving Water Quality Monitoring Parameters

Parameters and Tests	RL ³	Monitoring Frequency ¹
Photo Monitoring		
Upstream and downstream photographs at monitoring location		With every monitoring event
WATER COLUMN SAMPLING	;	
Physical Parameters and Ger Chemistry	neral	
Flow (field measure) (CFS) following SWAMP field SOP ⁹	.25	Monthly, including 2 stormwater events
pH (field measure)	0.1	
Electrical Conductivity (field measure) (µS/cm)	2.5	
Dissolved Oxygen (field measure) (mg/L)	0.1	•
Temperature (field measure) (°C)	0.1	
Turbidity (NTU)	0.5	
Total Dissolved Solids (mg/L)	10	
Total Suspended Solids (mg/L)	0.5	,
Nutrients		
Total Nitrogen (mg/L)	0.5	Monthly, including 2 stormwater events
Nitrate + Nitrite (as N) (mg/L)	0.1	
Total Ammonia (mg/L) Unionized Ammonia (calculated value, mg/L))	0.1	:
Total Phosphorus (as P) (mg/L)	0.02	
Soluble Orthophosphate (mg/L)	0.01	
Water column chlorophyll a (µg/L)	1.0	
Algae cover, Floating Mats, % coverage		
Algae cover, Attached, % coverage	-	-
Water Column Toxicity Test		
Algae - Selenastrum capricornutum (96-hour chronic; Method1003.0 in EPA/821/R- 02/013)	-	4 times each year, twice in dry season, twice in wet season
Water Flea – Ceriodaphnia dubia (7-day chronic; Method 1002.0 in EPA/821/R-02/013)		
Midge - Chironomus spp. (96- hour acute; Alternate test species in EPA 821-R-02-012)		-

-14-

MRP No. R3-2017-0002-01 (Tier 1) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

Parameters and Tests	RL	Monitoring Frequency ¹
Toxicity Identification Evaluation	-	
(TIE)		As directed by Executive Officer
Pesticides ² /Herbicides (µg/L)	
Organophosphate Pesticides		
Azinphos-methyl	0.02	2 times in both 2017 and 2018, once in dry season and once in wet season of each year, concurrent with water toxicity monitoring
Chlorpyrifos	0.005	· , ·
Diazinon	0.005	
Dichlorvos	0.01	
Dimethoate	0.01	
Dimeton-s	0.005	
Disulfoton (Disyton)	0.005	
Malathion	0.005	
Methamidophos	0.003	
Methidathion	0.02	
	0.02	
Parathion-methyl Phorate	0.02	
Phosmet	0.02	-
Neonicotinoids		
Thiamethoxam	.002	
Imidacloprid	.002	
Thiacloprid	.002	
Dinotefuran	.006	
Acetamiprid	.01	
Clothianidin	.02	
Herbicides		
Atrazine	0.05	
Cyanazine	0.20	
Diuron	0.05	
Glyphosate	2.0	
Linuron	0.1	
Paraguat	0.20	
Simazine	0.05	
Trifluralin	0.05	-
Metals (µg/L)		
Arsenic (total) 5,7	0.3	2 times is both 2017 and 2019, anap is do: concer and
Arsenic (total) ***	0.3	2 times in both 2017 and 2018, once in dry season and once in wet season of each year, concurrent with water toxicity monitoring
Boron (total) 6,7	10	www.y monoring
Control (10081)	0.01	
Cadmium (total & dissolved) 4.5,7	0.01	-

Parameters and Tests	RL ³	Monitoring Frequency ¹
Copper (total and dissolved) 4,7	0.01	
Lead (total and dissolved) 4,7	0.01	
Nickel (total and dissolved) 4,7	0.02	
Molybdenum (total) ⁷	1	
Selenium (total) ⁷	0.30	
Zinc (total and dissolved) 4.5,7	0.10	
Other (µg/L)		
Total Phenolic Compounds ⁸	5	2 times in 2017, once in spring (April-May) and once in fall (August-September)
Hardness (mg/L as CaCO3)	1	
Total Organic Carbon (ug/L)	0.6	•
SEDIMENT SAMPLING		
Sediment Toxicity - Hyalella azteca 10-day static renewal (EPA, 2000)		2 times each year, once in spring (April-May) and once in fall (August-September)
Pyrethroid Pesticides in Sediment (µg/kg)		
Gamma-cyhalothrin	2	2 times in both 2017 and 2018, once in spring (April-May) and once in fall (August-September) of each year, concurrent with sediment toxicity sampling
Lambda-cyhalothrin	2	-
Bifenthrin	2	
Beta-cyfluthrin	2	
Cyfluthrin	2	
Esfenvalerate	2	
Permethrin	2	
Cypermethrin	2	
Danitol	2	
Fenvalerate	2	
Fluvalinate	2	-
Other Monitoring in Sediment		
Chlorpyrifos (µg/kg)	2	
Total Organic Carbon	0.01%	
-		
Sediment Grain Size Analysis	1%	

-15-

Monitoring frequency may be used as a guide for developing alternative Sampling and Analysis Plans implemented

¹ Monitoring trequency may be used as a guide for developing alternative Sampling and Analysis Plans implemented by individual growers.
 ² Pesticide list may be modified based on specific pesticide use in Central Coast Region. Analytes on this list must be reported, at a minimum.
 ³ Reporting Limit, taken from SWAMP where applicable.
 ⁴ Holmgren, Meyer, Cheney and Daniels, 1993. Cadmium, Lead, Zinc, Copper and Nickel in Agricultural Soils of the United States. J. of Environ. Quality 22:335-348.

⁵Sax and Lewis, ed. 1987. Hawley's Condensed Chemical Dictionary. 11th ed. New York: Van Nostrand Reinhold Co., 1987. Zinc arsenate is an inserticide. <u>Http://www.coastalagro.com/products/labels/9%25BORON.pdf;</u> Boron is applied directly or as a component of

International Contraction of Application and Drainage. UNITY 2015 Contraction of Applications and Contractional Commission on Irrigation and Drainage. UNITY 2015 204-0104058.3. *http://cat.inist.fr/?aModele=afficheN&cpsidt=14074525; Phenols are breakdown products of herbicides and

Preproductiniscum rankodeer-amchereacopside 14074525; Phenois and breakdown pro-pesticides. Phenols can be directly toxic and cause endocrine disruption. "See SWAMP field measures SOP, p. 17 mg/L – milligrams per liter; ug/L – micrograms per liter; ug/kg – micrograms per kilogram; NTU – Nephelometric Turbidity Units; CFS – cubic feet per second.

Table 3. Groundwater Sampling Parameters

Parameter	RL	Analytical Method ³	Units
pH	0.1		pH Units
Specific	2.5	Field or Laboratory Measurement	µS/cm
Conductance		EPA General Methods	
Total Dissolved Solids	10		
Total Alkalinity as CaCO ₃		EPA Method 310.1 or 310.2	
Calcium	0.05		1
Magnesium	0.02	General Cations ¹	1
Sodium	0.1	EPA 200.7, 200.8, 200.9	mg/L
Potassium	0.1		
Sulfate (SO4)	1.0		1
Chloride	0.1		
Nitrate + Nitrite	0.1	General Anions EPA Method 300 or EPA Method 353.2	1
(as N) ²			
or			
Nitrate as N			

evaluating quality assurance/quality control of groundwater monitoring and laboratory analysis. ²The MRP allows analysis of "nitrate plus nitrite" to represent nitrate concentrations (as N). The "nitrate plus nitrite"

analysis allows for extended laboratory holding times and relieves the Discharger of meeting the short holding time required for nitrate. Dischargers may use alternative analytical methods approved by EPA.

RL - Reporting Limit; µS/cm - micro siemens per centimeter

Table 4. Tier 1 - Time Schedule for Key Monitoring and Reporting Requirements (MRPs)

REQUIREMENT	TIME SCHEDULE ¹
Submit Sampling And Analysis Plan and Quality Assurance Project Plan (SAAP/QAPP) for Surface Receiving Water Quality Monitoring (individually or through cooperative monitoring program)	By March 1, 2018, or as directed by the Executive Officer; satisfied if an approved SAAP/QAPP has been submitted pursuant to Order No. R3- 2012-0011 and associated MRPs
Initiate surface receiving water quality monitoring (individually or through cooperative monitoring program)	Per an approved SAAP and QAPP
Submit surface receiving water quality monitoring data (individually or through cooperative monitoring program)	Each January 1, April 1, July 1, and October 1

-17-

March 8, 2017

MRP No. R3-2017-0002-01 (Tier 1) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

 Submit surface receiving water quality Annual Monitoring Report (individually or through cooperative monitoring program)
 By July 1 2017; annually thereafter by July 1

 Initiate monitoring of groundwater wells
 First sample from March-June 2017, second sample from September-December 2017

 Submit groundwater monitoring results
 Within 60 days of the sample collection

¹Dates are relative to adoption of this Order, unless otherwise specified.

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CENTRAL COAST REGION

MONITORING AND REPORTING PROGRAM ORDER NO. R3-2017-0002-02

TIER 2

DISCHARGERS ENROLLED UNDER THE CONDITIONAL WAIVER OF WASTE DISCHARGE REQUIREMENTS FOR DISCHARGES FROM IRRIGATED LANDS

This Monitoring and Reporting Program Order No. R3-2017-0002-02 (MRP) is issued pursuant to California Water Code (Water Code) sections 13267 and 13269, which authorize the California Regional Water Quality Control Board, Central Coast Region (hereafter Central Coast Water Board) to require preparation and submittal of technical and monitoring reports. Water Code section 13269 requires a waiver of waste discharge requirements to include as a condition the performance of monitoring and the public availability of monitoring results. Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands, Order No. R3-2017-0002 (Order) includes criteria and requirements for three tiers. This MRP sets forth monitoring and reporting requirements for Tier 2 Dischargers enrolled under the Order. A summary of the requirements is shown below.

SUMMARY OF MONITORING AND REPORTING REQUIREMENTS FOR TIER 2:

- Part 1: Surface Receiving Water Monitoring and Reporting (cooperative or individual)
- Groundwater Monitoring and Reporting (cooperative or individual) Part 2:
- Total Nitrogen Applied Reporting (required for subset of Tier 2 Dischargers if farm/ranch growing any crop with high nitrate loading risk to groundwater);
- Annual Compliance Form Part 3:

Pursuant to Water Code section 13269(a)(2), monitoring requirements must be designed to support the development and implementation of the waiver program, including, but not limited to, verifying the adequacy and effectiveness of the waiver's conditions. The monitoring and reports required by this MRP are to evaluate effects of discharges of waste from irrigated agricultural operations and individual farms/ranches on waters of the state and to determine compliance with the Order.

MONITORING AND REPORTING BASED ON TIERS

The Order and MRP include criteria and requirements for three tiers, based upon those characteristics of the individual farms/ranches at the operation that present the highest level of waste discharge or greatest risk to water quality. Dischargers must meet conditions of the Order and MRP for the appropriate tier that applies to their land and/or the individual farm/ranch. Within a tier, Dischargers comply with requirements based on the specific level of discharge and threat to water quality from individual farms/ranches. The lowest tier, Tier 1, applies to dischargers who discharge the lowest level of waste (amount or concentration) or pose the lowest potential to cause or contribute to an exceedance of water quality standards in waters of the State or of the United States. The highest tier. Tier 3, applies to dischargers who discharge the highest level of waste or pose the greatest potential to cause or contribute to an exceedance of water quality standards in waters of the State or of the United States. Tier 2 applies to dischargers whose discharge has a moderate threat to water quality. Water quality is defined in terms of regional, state, or federal numeric or narrative water guality standards. Per the Order, Dischargers may submit a request to the Executive Officer to approve transfer to a lower tier. If the Executive Officer approves a transfer to a lower tier, any interested person may request that the Central Coast Water Board conduct a review of the Executive Officer's determination.

PART 1. SURFACE RECEIVING WATER MONITORING AND REPORTING REQUIREMENTS

The surface receiving water monitoring and reporting requirements described herein are generally a continuation of the surface receiving water monitoring and reporting requirements of Monitoring and Reporting Program Order No. 2012-0011-02, as revised August 22, 2016, with the intent of uninterrupted regular monitoring and reporting during the transition from Order No. R3-2012-0011-02 to Order No. R3-2017-0002-02.

Monitoring and reporting requirements for surface receiving water identified in Part 1.A. and Part 1.B. apply to Tier 2 Dischargers. Surface receiving water refers to water flowing in creeks and other surface waters of the State. Surface receiving water monitoring may be conducted through a cooperative monitoring program on behalf of Dischargers, or Dischargers may choose to conduct surface receiving water monitoring and reporting individually. Key monitoring and reporting requirements for surface receiving water are shown in Tables 1 and 2. Time schedules are shown in Table4.

A. Surface Receiving Water Quality Monitoring

 Dischargers must elect a surface receiving water monitoring option (cooperative monitoring program or individual receiving water monitoring) to comply with surface receiving water quality monitoring requirements, and identify the option selected on the Notice of Intent (NOI).

- 2. Dischargers are encouraged to choose participation in a cooperative monitoring program (e.g., the existing Cooperative Monitoring Program or a similar program) to comply with receiving water quality monitoring requirements. Dischargers not participating in a cooperative monitoring program must conduct surface receiving water quality monitoring individually that achieves the same purpose.
- 3. Dischargers (individually or as part of a cooperative monitoring program) must conduct surface receiving water quality monitoring to a) assess the impacts of their waste discharges from irrigated lands to receiving water, b) assess the status of receiving water quality and beneficial use protection in impaired waterbodies dominated by irrigated agricultural activity, c) evaluate status, short term patterns and long term trends (five to ten years or more) in receiving water quality, d) evaluate water quality impacts resulting from agricultural discharges (including but not limited to tile drain discharges), e) evaluate stormwater quality, f) evaluate condition of existing perennial, intermittent, or ephemeral streams or riparian or wetland area habitat, including degradation resulting from erosion or agricultural discharges of waste, and g) assist in the identification of specific sources of water quality problems.

Surface Receiving Water Quality Sampling and Analysis Plan

- 4. By March 1, 2018, or as directed by the Executive Officer, Dischargers (individually or as part of a cooperative monitoring program) must submit a surface receiving water quality Sampling and Analysis Plan (SAAP) and Quality Assurance Project Plan (QAPP); this requirement is satisfied if an approved SAAP and QAPP addressing all surface receiving water quality monitoring requirements described in this Order has been submitted pursuant to Order No.R3-2012-0011 and associated Monitoring and Reporting Programs. Dischargers (or a third party cooperative monitoring program) must develop the Sampling and Analysis Plan to describe how the proposed monitoring site locations, adjusted monitoring parameters, and other changes as necessary to assess the impacts of waste discharges from irrigated lands to receiving water. The Executive Officer must approve the Sampling and Analysis Plan and QAPP.
- The Sampling and Analysis Plan must include the following minimum required components:
 - a. Monitoring strategy to achieve objectives of the Order and MRP;
 - b. Map of monitoring sites with GIS coordinates;

- Identification of known water quality impairments and impaired waterbodies per the 2010 Clean Water Act 303(d) List of Impaired Waterbodies (List of Impaired Waterbodies);
- Identification of beneficial uses and applicable water quality standards;
- e. Identification of applicable Total Maximum Daily Loads;
- f. Monitoring parameters;
- Monitoring schedule, including description and frequencies of monitoring events;
- h. Description of data analysis methods;
- 6. The QAPP must include receiving water and site-specific information, project organization and responsibilities, and quality assurance components of the MRP. The QAPP must also include the laboratory and field requirements to be used for analyses and data evaluation. The QAPP must contain adequate detail for project and Water Board staff to identify and assess the technical and quality objectives, measurement and data acquisition methods, and limitations of the data generated under the surface receiving water quality monitoring. All sampling and laboratory methodologies and QAPP content must be consistent with U.S. EPA methods, State Water Board's Surface Water Ambient Monitoring Program (SWAMP) protocols and the Central Coast Water Board's Central Coast Ambient Monitoring Program (CCAMP). Following U.S. EPA guidelines¹ and SWAMP templates², the receiving water quality monitoring QAPP must include the following minimum required components:
 - Project Management. This component addresses basic project management, including the project history and objectives, roles and responsibilities of the participants, and other aspects.
 - b. Data Generation and Acquisition. This component addresses all aspects of project design and implementation. Implementation of these elements ensures that appropriate methods for sampling, measurement and analysis, data collection or generation, data handling, and quality control activities are employed and are properly documented. Quality control requirements are applicable to all the constituents sampled as part of the MRP, as described in the appropriate method.
 - c. Assessment and Oversight. This component addresses the activities for assessing the effectiveness of the implementation of the project and associated QA and QC activities. The purpose of the assessment is to provide project oversight that

¹ USEPA 2001 (2006) USEPA requirements for Quality Assurance Project Plans (QA/R-5) Office of Environmental Information, Washington, D.C. USEPA QA/R-5

http://waterboards.ca.gov/water_issues/programs/swamp/tools.shtml#qa

will ensure that the QA Project Plan is implemented as prescribed.

- d. Data Validation and Usability. This component addresses the quality assurance activities that occur after the data collection, laboratory analysis and data generation phase of the project is completed. Implementation of these elements ensures that the data conform to the specified criteria, thus achieving the MRP objectives.
- The Central Coast Water Board may conduct an audit of contracted laboratories at any time in order to evaluate compliance with the QAPP.
- 8. The Sampling and Analysis Plan and QAPP, and any proposed revisions are subject to approval by the Executive Officer. The Executive Officer may also revise the Sampling and Analysis Plan, including adding, removing, or changing monitoring site locations, changing monitoring parameters, and other changes as necessary to assess the impacts of waste discharges from irrigated lands to receiving water.

Surface Receiving Water Quality Monitoring Sites

9. The Sampling and Analysis Plan must, at a minimum, include monitoring sites to evaluate waterbodies identified in Table 1, unless otherwise approved by the Executive Officer. The Sampling and Analysis Plan must include sites to evaluate receiving water quality impacts most directly resulting from areas of agricultural discharge (including areas receiving tile drain discharges). Site selection must take into consideration the existence of any long term monitoring sites included in related monitoring programs (e.g. CCAMP and the existing CMP). Sites may be added or modified, subject to prior approval by the Executive Officer, to better assess the pollutant loading from individual sources or the impacts to receiving waters caused by individual discharges. Any modifications must consider sampling consistency for purposes of trend evaluation.

Surface Receiving Water Quality Monitoring Parameters

- The Sampling and Analysis Plan must, at a minimum, include the following types of monitoring and evaluation parameters listed below and identified in Table 2:
 - a. Flow Monitoring;
 - b. Water Quality (physical parameters, metals, nutrients, pesticides);
 - c. Toxicity (water and sediment);
 - d. Assessment of Benthic Invertebrates.

- 11. All analyses must be conducted at a laboratory certified for such analyses by the State Department of Public Health (CDPH) or at laboratories approved by the Executive Officer. Unless otherwise noted, all sampling, sample preservation, and analyses must be performed in accordance with the latest edition of *Test Methods for Evaluating Solid Waste*, SW-846, U.S. EPA, and analyzed as specified herein by the above analytical methods and reporting limits indicated. Certified laboratories can be found at the web link: <u>http://www.cdph.ca.gov/certlic/labs/Documents/ELAPLablist.xls</u>
- 12. Water quality and flow monitoring is used to assess the sources, concentrations, and loads of waste discharges from individual farms/ranches and groups of Dischargers to surface waters, to evaluate impacts to water quality and beneficial uses, and to evaluate the short term patterns and long term trends in receiving water quality. Monitoring data must be compared to existing numeric and narrative water quality objectives.
- 13. Toxicity testing is to evaluate water quality relative to the narrative toxicity objective. Water column toxicity analyses must be conducted on 100% (undiluted) sample. At sites where persistent unresolved toxicity is found, the Executive Officer may require concurrent toxicity and chemical analyses and a Toxicity Identification Evaluation (TIE) to identify the individual discharges causing the toxicity.

Surface Receiving Water Quality Monitoring Frequency and Schedule

- 14. The Sampling and Analysis Plan must include a schedule for sampling. Timing, duration, and frequency of monitoring must be based on the land use, complexity, hydrology, and size of the waterbody. Table 2 includes minimum monitoring frequency and parameter lists. Agricultural parameters that are less common may be monitored less frequently. Modifications to the receiving water quality monitoring parameters, frequently. Modifications to the receiving water quality monitoring parameters, frequently. Additional approval. At a minimum, the Sampling and Analysis Plan schedule must consist of monthly monitoring of common agricultural parameters in major agricultural areas, including two major storm events during the wet season (October 1 – April 30).
- 15. Storm event monitoring must be conducted within 18 hours of storm events, preferably including the first flush run-off event that results in significant increase in stream flow. For purposes of this MRP, a storm event is defined as precipitation producing onsite runoff (surface water flow) capable of creating significant ponding, erosion or other water quality problem. A

MRP No. R3-2017-0002-02 (Tier 2) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

significant storm event will generally result in greater than 1-inch of rain within a 24-hour period.

 Dischargers (individually or as part of a cooperative monitoring program) must perform receiving water quality monitoring per the Sampling and Analysis Plan and QAPP approved by the Executive Officer.

B. Surface Receiving Water Quality Reporting

Surface Receiving Water Quality Data Submittal

 Dischargers (individually or as part of a cooperative monitoring program) must submit water quality monitoring data to the Central Coast Water Board electronically, in a format specified by the Executive Officer and compatible with SWAMP/CCAMP electronic submittal guidelines, each January 1, April 1, July 1, and October 1.

Surface Receiving Water Quality Monitoring Annual Report

- By July 1, 2017, and every July 1 annually thereafter, Dischargers (individually or as part of a cooperative monitoring program) must submit an Annual Report, electronically, in a format specified by the Executive Officer including the following minimum elements:
 - a. Signed Transmittal Letter;
 - b. Title Page;
 - c. Table of Contents;
 - d. Executive Summary;
 - Summary of Exceedance Reports submitted during the reporting period;
 - f. Monitoring objectives and design;
 - g. Monitoring site descriptions and rainfall records for the time period covered;
 - h. Location of monitoring sites and map(s);
 - Tabulated results of all analyses arranged in tabular form so that the required information is readily discernible;
 - Summary of water quality data for any sites monitored as part of related monitoring programs, and used to evaluate receiving water as described in the Sampling and Analysis Plan.
 - k. Discussion of data to clearly illustrate compliance with the Order and water quality standards;
 - Discussion of short term patterns and long term trends in receiving water quality and beneficial use protection;
 - Evaluation of pesticide and toxicity analyses results, and recommendation of candidate sites for Toxicity Identification Evaluations (TIEs);

- Identification of the location of any agricultural discharges observed discharging directly to surface receiving water;
- Laboratory data submitted electronically in a SWAMP/CCAMP comparable format;
- p. Sampling and analytical methods used;
- q. Copy of chain-of-custody forms;
- r. Field data sheets, signed laboratory reports, laboratory raw data;
- s. Associated laboratory and field quality control samples results;
- t. Summary of Quality Assurance Evaluation results;
- Specify the method used to obtain flow at each monitoring site during each monitoring event;
- Electronic or hard copies of photos obtained from all monitoring sites, clearly labeled with site ID and date;
- w. Conclusions.

PART 2. GROUNDWATER MONITORING AND REPORTING REQUIREMENTS

Groundwater monitoring may be conducted through a cooperative monitoring and reporting program on behalf of growers, or Dischargers may choose to conduct groundwater monitoring and reporting individually. Qualifying cooperative groundwater monitoring and reporting programs must implement the groundwater monitoring and reporting requirements described in this Order, unless otherwise approved by the Executive Officer. An interested person may seek review by the Central Coast Water Board of the Executive Officer's approval or denial of a cooperative groundwater monitoring and reporting program.

Key monitoring and reporting requirements for groundwater are shown in Table 3.

A. Groundwater Monitoring

- Dischargers must sample private domestic wells and the primary irrigation well on their farm/ranch to evaluate groundwater conditions in agricultural areas, identify areas at greatest risk for nitrogen loading and exceedance of drinking water standards, and identify priority areas for follow up actions.
- 2. Dischargers must sample at least one groundwater well for each farm/ranch on their operation, including groundwater wells that are located within the property boundary of the enrolled county assessor parcel numbers (APNs). For farms/ranches with multiple groundwater wells, Dischargers must sample all domestic wells and the primary irrigation well. For the purposes of this MRP, a "domestic well" is any well that is used or may be used for domestic use purposes, including any groundwater well that is connected to a residence, workshop, or place of business that may be used for human consumption, cooking, or sanitary purposes. Groundwater monitoring

MRP. No. R3-2017-0002-02 (Tier 2) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

> parameters must include well screen interval depths (if available), general chemical parameters, and general cations and anions listed in Table 3.

- Dischargers must conduct two rounds of monitoring of required groundwater wells during calendar year 2017; one sample collected during spring (March -June) and one sample collected during fall (September - December).
- 4. Groundwater samples must be collected by a qualified third party (e.g., consultant, technician, person conducting cooperative monitoring) using proper sampling methods, chain-of-custody, and quality assurance/quality control protocols. Groundwater samples must be collected at or near the well head before the pressure tank and prior to any well head treatment. In cases where this is not possible, the water sample must be collected from a sampling point as close to the pressure tank as possible, or from a cold-water spigot located before any filters or water treatment systems.
- 5. Laboratory analyses for groundwater samples must be conducted by a State certified laboratory according to U.S. EPA approved methods; unless otherwise noted, all monitoring, sample preservation, and analyses must be performed in accordance with the latest edition of *Test Methods for Evaluating Solid Waste*, SW-846, United States Environmental Protection Agency, and analyzed as specified herein by the above analytical methods and reporting limits indicated. Certified laboratories can be found at the web link below: http://www.waterboards.ca.gov/centralcoast/water_issues/programs/ag_waive rs/docs/resources4growers/2016_04_11_labs.pdf
- 6. If a discharger determines that water in any domestic well exceeds 10 mg/L of nitrate as N, the discharger or third party must provide notice to the Central Coast Water Board within 24 hours of learning of the exceedance. For domestic wells on a Discharger's farm/ranch, that exceed 10 mg/L of nitrate as N, the Discharger must provide written notification to the users within 10 days of learning of the exceedance and provide written confirmation of the notification to the Central Coast Water Board.

The drinking water notification must include the statement that the water poses a human health risk due to elevated nitrate concentration, and include a warning against the use of the water for drinking or cooking. In addition, Dischargers must also provide prompt written notification to any new well users (e.g. tenants and employees with access to the affected well), whenever there is a change in occupancy.

For all other domestic wells not on a Discharger's farm/ranch but that may be impacted by nitrate, the Central Coast Water Board will notify the users promptly. MRP No. R3-2017-0002-02 (Tier 2) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

> The drinking water notification and confirmation letters required by this Order are available to the public.

B. Groundwater Reporting

- Within 60 days of sample collection, Dischargers must coordinate with the laboratory to submit the following groundwater monitoring results and information, electronically, using the Water Board's GeoTracker electronic deliverable format (EDF):
 - a. GeoTracker Ranch Global Identification Number
 - b. Field point name (Well Name)
 - c. Field Point Class (Well Type)
 - d. Latitude
 - e. Longitude
 - f. Sample collection date
 - g. Analytical results
 - Well construction information (e.g., total depth, screened intervals, depth to water), as available
- Dischargers must submit groundwater well information required in the electronic Notice of Intent (eNOI) for each farm/ranch and update the eNOI to reflect changes in the farm/ranch information within 30 days of the change. Groundwater well information reported on the eNOI includes, but is not limited to:
 - a. Number of groundwater wells present at each farm/ranch
 - Identification of any groundwater wells abandoned or destroyed (including method destroyed) in compliance with the Order
 - c. Use for fertigation or chemigation
 - d. Presence of back flow prevention devices
 - Number of groundwater wells used for agricultural purposes
 Number of groundwater wells used for or may be used for domestic use purposes (domestic wells).

C. Total Nitrogen Applied Reporting

 By March 1, 2018, and by March 1 annually thereafter, Tier 2 Dischargers growing any crop with a high potential to discharge nitrogen to groundwater must record and report total nitrogen applied for each specific crop that was irrigated and grown for commercial purposes on that farm/ranch during the preceding calendar year (January through December).

Crops with a high potential to discharge nitrogen to groundwater are: beet, broccoli, cabbage, cauliflower, celery, Chinese cabbage (napa), collard, endive, kale, leek, lettuce (leaf and head), mustard, onion (dry and green), spinach, strawberry, pepper (fruiting), and parsley.

Total nitrogen applied must be reported on the Total Nitrogen Applied Report form as described in the Total Nitrogen Applied Report form instructions.

Total nitrogen applied includes any product containing any form or concentration of nitrogen including, but not limited to, organic and inorganic fertilizers, slow release products, compost, compost teas, manure, and extracts.

- 2. The Total Nitrogen Applied Report form includes the following information:
 - General ranch information such as GeoTracker file numbers, name, location, acres.
 - b. Nitrogen concentration of irrigation water
 - c. Nitrogen applied in pounds per acre with irrigation water
 - d. Nitrogen present in the soil
 - e. Nitrogen applied with compost and amendments
 - f. Specific crops grown
 - g. Nitrogen applied in pounds per acre with fertilizers and other materials to each specific crop grown
 - h. Crop acres of each specific crop grown
 - Whether each specific crop was grown organically or conventionally
 - j. Basis for the nitrogen applied
 - k. Explanation and comments section
 - I. Certification statement with penalty of perjury declaration
 - Meditional information regarding whether each specific crop was grown in a nursery, greenhouse, hydroponically, in containers, and similar variables.

PART 3. ANNUAL COMPLIANCE FORM

Tier 2 Dischargers must submit annual compliance information, electronically, on the Annual Compliance Form. The purpose of the electronic Annual Compliance Form is to provide information to the Central Coast Water Board to assist in the evaluation of threat to water quality from individual agricultural discharges of waste and measure progress towards water quality improvement and verify compliance with the Order and MRP. Time schedules are shown in Table 4.

A. Annual Compliance Form

 By March 1, 2018, and updated annually thereafter by March 1, Tier 2 Dischargers must submit an Annual Compliance Form electronically, in a MRP No. R3-2017-0002-02 (Tier 2) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

format specified by the Executive Officer. The electronic Annual Compliance Form includes, but is not limited to the following minimum requirements¹:

- Question regarding consistency between the Annual Compliance Form and the electronic Notice of Intent (eNOI);
- b. Information regarding type and characteristics of discharge (e.g., number of discharge points, estimated flow/volume, number of tailwater days);
- Identification of any direct agricultural discharges to a stream, lake, estuary, bay, or ocean;
- d. Identification of specific farm water quality management practices completed, in progress, and planned to address water quality impacts caused by discharges of waste including irrigation management, pesticide management, nutrient management, salinity management, stormwater management, and sediment and erosion control to achieve compliance with this Order; and identification of specific methods used, and described in the Farm Plan consistent with Order Provision 44.g., for the purposes of assessing the effectiveness of management practices implemented and the outcomes of such assessments;
- e. Proprietary information question and justification;
- f. Authorization and certification statement and declaration of penalty of perjury.

PART 5. GENERAL MONITORING AND REPORTING REQUIREMENTS

A. Submittal of Technical Reports

 Dischargers must submit reports in a format specified by the Executive Officer. A transmittal letter must accompany each report, containing the following penalty of perjury statement signed by the Discharger or the Discharger's authorized agent:

"In compliance with Water Code §13267, I certify under penalty of perjury that this document and all attachments were prepared by me, or under my direction or supervision following a system designed to assure that qualified personnel properly gather and evaluate the information submitted. To the best of my knowledge and belief, this document and all attachments are true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment".

¹ Items reported in the Annual Compliance Form are due by March 1, 2018, and annually thereafter, unless otherwise specified.

MRP No. R3-2017-0002-02 (Tier 2) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

2. If the Discharger asserts that all or a portion of a report submitted pursuant to this Order is subject to an exemption from public disclosure (e.g. trade secrets or secret processes), the Discharger must provide an explanation of how those portions of the reports are exempt from public disclosure. The Discharger must clearly indicate on the cover of the report (typically an electronic submittal) that the Discharger asserts that all or a portion of the report is exempt from public disclosure, submit a complete report with those portions that are asserted to be exempt in redacted form, submit separately (in a separate electronic file) unredacted pages (to be maintained separately by staff). The Central Coast Water Board staff will determine whether any such report or portion of a report qualifies for an exemption from public disclosure, If the Central Coast Water Board staff disagrees with the asserted exemption from public disclosure, the Central Coast Water Board staff disagrees with the asserted asserted to making such report or portion of a report or portion of a staff will notify the Discharger prior to making such report or portions from public disclosure.

B. Central Coast Water Board Authority

- Monitoring reports are required pursuant to section 13267 of the California Water Code. Pursuant to section 13268 of the Water Code, a violation of a request made pursuant to section 13267 may subject you to civil liability of up to \$1000 per day.
- The Water Board needs the required information to determine compliance with Order No. R3-2017-0002. The evidence supporting these requirements is included in the findings of Order No. R3-2017-0002.

John M. Robertson Executive Officer

March 8, 2017

Date

Table 1. Major Waterbodies in Agricultural Areas¹

Hydrologic SubArea					Waterbody Name	
30510	Pajaro River	30920	Quail Creek			
30510	Salsipuedes Creek	30920	Salinas Reclamation Canal			
30510	Watsonville Slough	31022	Chorro Creek			
30510	Watsonville Creek ²	31023	Los Osos Creek			
30510	Beach Road Ditch ²	31023	Warden Creek			
30530	Carnadero Creek	31024	San Luis Obispo Creek			
30530	Furlong Creek ²	31024	Prefumo Creek			
30530	Llagas Creek	31031	Arroyo Grande Creek			
30530	Miller's Canal	31031	Los Berros Creek			
30530	San Juan Creek	31210	Bradley Canyon Creek			
30530	Tesquisquita Slough	31210	Bradley Channel			
30600	Moro Cojo Slough	31210	Green Valley Creek			
30910	Alisal Slough	31210	Main Street Canal			
30910	Blanco Drain	31210	Orcutt Solomon Creek			
30910	Old Salinas River	31210	Oso Flaco Creek			
30910	Salinas River (below Gonzales Rd.)	31210	Little Oso Flaco Creek			
30920	Salinas River above Gonzales Rd. and below Nacimiento R.)	31210	Santa Maria River			
30910	Santa Rita Creek ²	31310	San Antonio Creek ²			
30910	Tembladero Slough	31410	Santa Ynez River			
30920	Alisal Creek	31531	Bell Creek			
30920	Chualar Creek	31531	Glenn Annie Creek			
30920	Espinosa Slough 31531 Los Carneros Creek ²		Los Carneros Creek ²			
30920	Gabilan Creek 31534 Arroyo Paredo		Arroyo Paredon Creek			
30920	Natividad Creek	31534	Franklin Creek			

Alt a minimum, monitoring sites must be included for these waterbodies in agricultural areas, unless otherwise approved by the Executive Officer. Monitoring sites may be proposed for addition or modification to better assess the impacts of waste discharges from irrigated lands to surface water. Dischargers choosing to comply with surface receiving water quality monitoring, individually (not part of a cooperative monitoring program) must only monitor rises for waterbodies receiving the discharge.

Table 2. Surface Receiving Water Quality Monitoring Parameters

-15-

Parameters and Tests	RL ³	Monitoring Frequency ¹
Photo Monitoring		
Upstream and downstream photographs at monitoring location		With every monitoring event
WATER COLUMN SAMPLING	;	
Physical Parameters and Ger Chemistry	neral	
Flow (field measure) (CFS) following SWAMP field SOP ⁹	.25	Monthly, including 2 stormwater events
pH (field measure)	0.1	
Electrical Conductivity (field measure) (µS/cm)	2.5	
Dissolved Oxygen (field	0.1	
measure) (mg/L)		
Temperature (field measure) (°C)	0.1	
Turbidity (NTU)	0.5	
Total Dissolved Solids (mg/L)	10	
Total Suspended Solids (mg/L)	0.5	
Nutrients		
Total Nitrogen (mg/L)	0.5	Monthly, including 2 stormwater events
Nitrate + Nitrite (as N) (mg/L)	0.1	
Total Ammonia (mg/L) Unionized Ammonia (calculated value, mg/L))	0.1	
Total Phosphorus (as P) (mg/L)	0.02	
Soluble Orthophosphate (mg/L)	0.01	
Water column chlorophyll a (µg/L)	1.0	
Algae cover, Floating Mats, % coverage		
Algae cover, Attached, % coverage	-	
Water Column Toxicity Test		
Algae - Selenastrum capricornutum (96-hour chronic; Method1003.0 in EPA/821/R- 02/013)		4 times each year, twice in dry season, twice in wet season
Water Flea – Ceriodaphnia dubia (7-day chronic; Method 1002.0 in EPA/821/R-02/013)		
Midge - Chironomus spp. (96- hour acute; Alternate test species in EPA 821-R-02-012)		-

-16-

MRP No. R3-2017-0002-02 (Tier 2) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

Parameters and Tests	RL ³	Monitoring Frequency ¹
Toxicity Identification Evaluation	-	
(TIE)		As directed by Executive Officer
Pesticides ² /Herbicides (µg/L	.)	
Organophosphate		
Pesticides		
Azinphos-methyl	0.02	2 times in both 2017 and 2018, once in dry season and once in wet season of each year, concurrent with water toxicity monitoring
Chlorpyrifos	0.005	
Diazinon	0.005	
Dichlorvos	0.01	
Dimethoate	0.01	
Dimeton-s	0.005	
Disulfoton (Disyton)	0.005	
Malathion	0.005	
Methamidophos	0.02	
Methidathion	0.02	
Parathion-methyl	0.02	
Phorate	0.01	
Phosmet	0.02	
Neonicotinoids		
Thiamethoxam	.002	
Imidacloprid	.002	
Thiacloprid	.002	
Dinotefuran	.002	
Acetamiprid	.000	
Clothianidin	.02	-
Herbicides		
Atrazine	0.05	
Cyanazine	0.20	
Diuron	0.05	
Glyphosate	2.0	
Linuron	0.1	
Paraguat	0.20	
Simazine	0.05	
Trifluralin	0.05	
Metals (µg/L)		
Arsenic (total) ^{6,7}	0.3	2 times in both 2017 and 2018, once in dry season and once in wet season of each year, concurrent with water
		toxicity monitoring
Boron (total) 6,7	10	-

MRP No. R3-2017-0002-02 (Tier 2) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

Parameters and Tests	RL ³	Monitoring Frequency ¹
Cadmium (total & dissolved) 4.5,7	0.01	
Copper (total and dissolved) 4,7	0.01	
Lead (total and dissolved) 4.7	0.01	
Nickel (total and dissolved) 4,7	0.02	
Molybdenum (total) 7	1	
Selenium (total) ⁷	0.30	
Zinc (total and dissolved) 4.5,7	0.10	
Other (µg/L)	0.10	
Total Phenolic Compounds ⁸	5	2 times in 2017, once in spring (April-May) and once in fal (August-September)
Hardness (mg/L as CaCO3)	1	(August-September)
Total Organic Carbon (ug/L)	0.6	
SEDIMENT SAMPLING	0.0	
Codiment Taulaite - Musicile		2 times each year, once in spring (April-May) and once in
Sediment Toxicity - Hyalella azteca 10-day static renewal (EPA, 2000)		fall (August-September)
Pyrethroid Pesticides in Sediment (μg/kg)		
Gamma-cyhalothrin	2	2 times in both 2017 and 2018, once in spring (April-May) and once in fall (August-September) of each year, concurrent with sediment toxicity sampling
Lambda-cyhalothrin	2	-
Bifenthrin	2	
Beta-cyfluthrin	2	
Cyfluthrin	2	
Esfenvalerate	2	
Permethrin	2	
Cypermethrin	2	
Danitol	2	-
Fenvalerate	2	
Fluvalinate	2	-
Other Monitoring in Sediment		
Chlorpyrifos (µg/kg)	2	-
Total Organic Carbon	0.01%	-

-17-

¹Monitoring is ongoing through all five years of the Order, unless otherwise specified. Monitoring frequency may be used as a guide for developing alternative Sampling and Analysis Plan. ⁴Pesticide list may be modified based on specific pesticide use in Central Coast Region. Analytes on this list must be reported, at a minimum.

MRP No. R3-2017-0002-02 (Tier 2) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

³ Reporting Limit, taken from SWAMP where applicable.
 ⁴ Holmgren, Meyer, Cheney and Daniels, 1993. Cadmium, Lead, Zinc, Copper and Nickel in Agricultural Soils of the United States. J. of Environ. Quality 22:335-348.
 ⁵ Sax and Lewis, ed. 1987. Hawley's Condensed Chemical Dictionary. 11th ed. New York: Van Nostrand Reinhold Co., 1987. Zinc arsenate is an insecticide.
 ⁶ <u>Http://www.coastalagro.com/products/labels/9%25BORON.pdf;</u> Boron is applied directly or as a component of fertilizers as a plant nutrient.
 ⁶ Madramootoo, Johnston, Willardson, eds. 1997. Management of Agricultural Drainage Water Quality. International Commission on Irrigation and Drainage. U.N. FAO. SBN 92-6-104058.3.
 ⁶ http://cat.inist.fir?aModele=affichet%Ecpsidt=14074525; Phenols are breakdown products of herbicides and peeticides. Phenols can be directly toxic and cause endocrine disruption.

Pesticidae. Phenols can be directly toxic and cause endocrine disruption. "See SWAMP field measures SOP, p. 17 mg/L – milligrams per liter; ug/L – micrograms per liter; ug/kg – micrograms per kilogram; NTU – Nephelometric Turbidity Units; CFS – cubic feet per second;

Table 3. Groundwater Monitoring Parameters

Parameter	RL	Analytical Method ³	Units
pH	0.1		pH Units
Specific Conductance	2.5	Field or Laboratory Measurement EPA General Methods	µS/cm
Total Dissolved Solids	10		
Total Alkalinity as CaCO3	1	EPA Method 310.1 or 310.2	1
Calcium	0.05		1
Magnesium	0.02	General Cations ¹	1
Sodium	0.1	EPA 200.7, 200.8, 200.9	mg/L
Potassium	0.1		
Sulfate (SO4)	1.0		1
Chloride	0.1		
Nitrate + Nitrite	0.1	General Anions EPA Method 300 or EPA Method 353.2	
(as N) ²			
or			
Nitrate as N			

General chemistry parameters (major cations and anions) represent geochemistry of water bearing zone and assist in evaluating quality assurance/quality control of groundwater sampling and laboratory analysis. ²The MRP allows analysis of "nitrate plus nitrite" to represent nitrate concentrations (as N). The "nitrate plus nitrite"

analysis allows for extended laboratory holding times and relieves the Discharger of meeting the short holding time required for nitrate. Dischargers may use alternative analytical methods approved by EPA.

RL - Reporting Limit; µS/cm - micro siemens per centimeter

Table4. Tier 2 - Time Schedule for Key Monitoring and Reporting Requirements (MRPs)

REQUIREMENT	TIME SCHEDULE ¹
Submit Sampling And Analysis Plan and Quality Assurance Project Plan (SAAP/QAPP) for Surface Receiving Water Quality Monitoring (individually or through cooperative monitoring program)	By March 1, 2018, or as directed by the Executive Officer; satisfied if an approved SAAP/QAPP has been submitted pursuant to Order No. R3-2012-0011 and associated MRPs
Initiate surface receiving water quality monitoring (individually or through cooperative monitoring program)	Per an approved SAAP and QAPP
Submit surface receiving water quality monitoring data (individually or through cooperative monitoring program)	Each January 1, April 1, July 1, and October
Submit surface receiving water quality Annual Monitoring Report (individually or through cooperative monitoring program)	By July 12017: annually thereafter by July 1
Initiate monitoring of groundwater wells	First sample from March-June 2017, second sample from September-December 2017
Submit electronic Annual Compliance Form	March 1, 2018 and every March 1 annually thereafter
Submit groundwater monitoring results	Within 60 days of the sample collection
Tier 2 Dischargers with farms/ranches growing high risk crops: Report total nitrogen applied on the Total Nitrogen Applied form	March 1, 2018 and every March 1annually thereafter

Total Nitrogen Applied form
³ Dates are relative to adoption of this Order or enrollment date for Dischargers enrolled after the adoption of this Order, unless otherwise specified.

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CENTRAL COAST REGION

MONITORING AND REPORTING PROGRAM ORDER NO. R3-2017-0002-03

TIER 3

DISCHARGERS ENROLLED UNDER CONDITIONAL WAIVER OF WASTE DISCHARGE REQUIREMENTS FOR DISCHARGES FROM IRRIGATED LANDS

This Monitoring and Reporting Program Order No. R3-2017-0002-03 (MRP) is issued pursuant to California Water Code (Water Code) sections 13267 and 13269, which authorize the California Regional Water Quality Control Board, Central Coast Region (hereafter Central Coast Water Board) to require preparation and submittal of technical and monitoring reports. Water Code section 13269 requires a waiver of waste discharge requirements to include as a condition, the performance of monitoring and the public availability of monitoring results. *Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands*, Order No. R3-2017-0002 (Order), includes criteria and requirements for Tier 3 Dischargers enrolled under the Order. A summary of the requirements is shown below.

SUMMARY OF MONITORING AND REPORTING REQUIREMENTS FOR TIER 3:

Part 1:	Surface Receiving Water Monitoring and Reporting (cooperative or individual)
Part 2:	Groundwater Monitoring and Reporting (cooperative or individual)
	Total Nitrogen Applied Reporting (required for subset of Tier 3 Dischargers if farm/ranch growing any crop with high nitrate loading risk to groundwater);
Part 3:	Annual Compliance Form
Part 5:	Individual Surface Water Discharge Monitoring and Reporting
Part 6:	Irrigation and Nutrient Management Plan (required for subset of Tier 3 Dischargers if farm/ranch has High Nitrate Loading Risk)
Part 7:	Water Quality Buffer Plan (required for subset of Tier 3 Dischargers if farm/ranch contains or is adjacent to a waterbody impaired for temperature, turbidity or sediment)

Pursuant to Water Code section 13269(a)(2), monitoring requirements must be designed to support the development and implementation of the waiver program, including, but not limited to, verifying the adequacy and effectiveness of the waiver's conditions. The monitoring and reports required by this MRP are to evaluate effects of discharges of waste from irrigated agricultural operations and individual farms/ranches on waters of the state and to determine compliance with the Order.

MONITORING AND REPORTING BASED ON TIERS

The Order and MRP includes criteria and requirements for three tiers, based upon those characteristics of the individual farms/ranches at the operation that present the highest level of waste discharge or greatest risk to water quality. Dischargers must meet conditions of the Order and MRP for the appropriate tier that applies to their land and/or the individual farm/ranch. Within a tier, Dischargers comply with requirements based on the specific level of discharge and threat to water quality from individual farms/ranches. The lowest tier. Tier 1, applies to dischargers who discharge the lowest level of waste (amount or concentration) or pose the lowest potential to cause or contribute to an exceedance of water quality standards in waters of the State or of the United States. The highest tier, Tier 3, applies to dischargers who discharge the highest level of waste or pose the greatest potential to cause or contribute to an exceedance of water quality standards in waters of the State or of the United States. Tier 2 applies to dischargers whose discharge has a moderate threat to water guality. Water guality is defined in terms of regional, state, or federal numeric or narrative water quality standards. Per the Order, Dischargers may submit a request to the Executive Officer to approve transfer to a lower tier. If the Executive Officer approves a transfer to a lower tier, any interested person may request that the Central Coast Water Board conduct a review of the Executive Officer's determination.

PART 1. SURFACE RECEIVING WATER MONITORING AND REPORTING REQUIREMENTS

The surface receiving water monitoring and reporting requirements described herein are generally a continuation of the surface receiving water monitoring and reporting requirements of Monitoring and Reporting Program Order No. 2012-0011-03, as revised August 22, 2016, with the intent of uninterrupted regular monitoring and reporting during the transition from Order No. R3-2012-0011-03 to Order No. R3-2017-0002-03.

Monitoring and reporting requirements for surface receiving water identified in Part 1.A. and Part 1.B. apply to Tier 3 Dischargers. Surface receiving water refers to water flowing in creeks and other surface waters of the State. Surface receiving water monitoring may be conducted through a cooperative monitoring program on behalf of Dischargers, or Dischargers may choose to conduct surface receiving water monitoring and reporting individually. Key monitoring and reporting requirements for surface receiving water are shown in Tables 1 and 2. Time schedules are shown in Table 5.

A. Surface Receiving Water Quality Monitoring

 Dischargers must elect a surface receiving water monitoring option (cooperative monitoring program or individual receiving water monitoring) to comply with surface receiving water quality monitoring requirements, and identify the option selected on the Notice of Intent (NOI).

- 2. Dischargers are encouraged to choose participation in a cooperative monitoring program (e.g., the existing Cooperative Monitoring Program or a similar program) to comply with receiving water quality monitoring requirements. Dischargers not participating in a cooperative monitoring program must conduct surface receiving water quality monitoring individually that achieves the same purpose.
- 3. Dischargers (individually or as part of a cooperative monitoring program) must conduct surface receiving water quality monitoring to a) assess the impacts of their waste discharges from irrigated lands to receiving water, b) assess the status of receiving water quality and beneficial use protection in impaired waterbodies dominated by irrigated agricultural activity, c) evaluate status, short term patterns and long term trends (five to ten years or more) in receiving water quality, d) evaluate water quality impacts resulting from agricultural discharges (including but not limited to tile drain discharges), e) evaluate stormwater quality, f) evaluate condition of existing perennial, intermittent, or ephemeral streams or riparian or wetland area habitat, including degradation resulting from erosion or agricultural discharges of waste, and g) assist in the identification of specific sources of water quality problems.

Surface Receiving Water Quality Sampling and Analysis Plan

- 4. By March 1, 2018, or as directed by the Executive Officer, Dischargers (individually or as part of a cooperative monitoring program) must submit a surface receiving water quality Sampling and Analysis Plan (SAAP) and Quality Assurance Project Plan (QAPP); this requirement is satisfied if an approved SAAP and QAPP addressing all surface receiving water quality monitoring requirements described in this Order has been submitted pursuant to Order No.R3-2012-0011 and associated Monitoring and Reporting Programs. Dischargers (or a third party cooperative monitoring program) must develop the Sampling and Analysis Plan to describe how the proposed monitoring site locations, adjusted monitoring parameters, and other changes as necessary to assess the impacts of waste discharges from irrigated lands to receiving water. The Executive Officer must approve the Sampling and Analysis Plan and QAPP.
- The Sampling and Analysis Plan must include the following minimum required components:
 - a. Monitoring strategy to achieve objectives of the Order and MRP;
 - b. Map of monitoring sites with GIS coordinates;

- Identification of known water quality impairments and impaired waterbodies per the 2010 Clean Water Act 303(d) List of Impaired Waterbodies (List of Impaired Waterbodies);
- Identification of beneficial uses and applicable water quality standards;
- e. Identification of applicable Total Maximum Daily Loads;
- f. Monitoring parameters;
- Monitoring schedule, including description and frequencies of monitoring events;
- h. Description of data analysis methods;
- 6. The QAPP must include receiving water and site-specific information, project organization and responsibilities, and quality assurance components of the MRP. The QAPP must also include the laboratory and field requirements to be used for analyses and data evaluation. The QAPP must contain adequate detail for project and Water Board staff to identify and assess the technical and quality objectives, measurement and data acquisition methods, and limitations of the data generated under the surface receiving water quality monitoring. All sampling and laboratory methodologies and QAPP content must be consistent with U.S. EPA methods, State Water Board's Surface Water Ambient Monitoring Program (SWAMP) protocols and the Central Coast Water Board's Central Coast Ambient Monitoring Program (CCAMP). Following U.S. EPA guidelines¹ and SWAMP templates², the receiving water quality monitoring QAPP must include the following minimum required components:
 - Project Management. This component addresses basic project management, including the project history and objectives, roles and responsibilities of the participants, and other aspects.
 - b. Data Generation and Acquisition. This component addresses all aspects of project design and implementation. Implementation of these elements ensures that appropriate methods for sampling, measurement and analysis, data collection or generation, data handling, and quality control activities are employed and are properly documented. Quality control requirements are applicable to all the constituents sampled as part of the MRP, as described in the appropriate method.
 - c. Assessment and Oversight. This component addresses the activities for assessing the effectiveness of the implementation of the project and associated QA and QC activities. The purpose of the assessment is to provide project oversight that

¹ USEPA. 2001 (2006) USEPA Requirements for Quality Assurance Project Plans (QA/R-5) Office of Environmental Information, Washington, D.C. USEPA QA/R-5

http://waterboards.ca.gov/water_issues/programs/swamp/tools.shtml#qa

will ensure that the QA Project Plan is implemented as prescribed.

- d. Data Validation and Usability. This component addresses the quality assurance activities that occur after the data collection, laboratory analysis and data generation phase of the project is completed. Implementation of these elements ensures that the data conform to the specified criteria, thus achieving the MRP objectives.
- The Central Coast Water Board may conduct an audit of contracted laboratories at any time in order to evaluate compliance with the QAPP.
- 8. The Sampling and Analysis Plan and QAPP, and any proposed revisions are subject to approval by the Executive Officer. The Executive Officer may also revise the Sampling and Analysis Plan, including adding, removing, or changing monitoring site locations, changing monitoring parameters, and other changes as necessary to assess the impacts of waste discharges from irrigated lands to receiving water.

Surface Receiving Water Quality Monitoring Sites

9. The Sampling and Analysis Plan must, at a minimum, include monitoring sites to evaluate waterbodies identified in Table 1, unless otherwise approved by the Executive Officer. The Sampling and Analysis Plan must include sites to evaluate receiving water quality impacts most directly resulting from areas of agricultural discharge (including areas receiving tile drain discharges). Site selection must take into consideration the existence of any long term monitoring sites included in related monitoring programs (e.g. CCAMP and the existing CMP). Sites may be added or modified, subject to prior approval by the Executive Officer, to better assess the pollutant loading from individual sources or the impacts to receiving waters caused by individual discharges. Any modifications must consider sampling consistency for purposes of trend evaluation.

Surface Receiving Water Quality Monitoring Parameters

- The Sampling and Analysis Plan must, at a minimum, include the following types of monitoring and evaluation parameters listed below and identified in Table 2:
 - a. Flow Monitoring;
 - b. Water Quality (physical parameters, metals, nutrients, pesticides);
 - c. Toxicity (water and sediment);
 - d. Assessment of Benthic Invertebrates.

- 11. All analyses must be conducted at a laboratory certified for such analyses by the State Department of Public Health (CDPH) or at laboratories approved by the Executive Officer. Unless otherwise noted, all sampling, sample preservation, and analyses must be performed in accordance with the latest edition of *Test Methods for Evaluating Solid Waste*, SW-846, U.S. EPA, and analyzed as specified herein by the above analytical methods and reporting limits indicated. Certified laboratories can be found at the web link: <u>http://www.cdph.ca.gov/certlic/labs/Documents/ELAPLablist.xls</u>
- 12. Water quality and flow monitoring is used to assess the sources, concentrations, and loads of waste discharges from individual farms/ranches and groups of Dischargers to surface waters, to evaluate impacts to water quality and beneficial uses, and to evaluate the short term patterns and long term trends in receiving water quality. Monitoring data must be compared to existing numeric and narrative water quality objectives.
- 13. Toxicity testing is to evaluate water quality relative to the narrative toxicity objective. Water column toxicity analyses must be conducted on 100% (undiluted) sample. At sites where persistent unresolved toxicity is found, the Executive Officer may require concurrent toxicity and chemical analyses and a Toxicity Identification Evaluation (TIE) to identify the individual discharges causing the toxicity.

Surface Receiving Water Quality Monitoring Frequency and Schedule

- 14. The Sampling and Analysis Plan must include a schedule for sampling. Timing, duration, and frequency of monitoring must be based on the land use, complexity, hydrology, and size of the waterbody. Table 2 includes minimum monitoring frequency and parameter lists. Agricultural parameters that are less common may be monitored less frequently. Modifications to the receiving water quality monitoring parameters, frequently. Modifications to the receiving water quality monitoring parameters, frequency, and schedule may be submitted for Executive Officer consideration and approval. At a minimum, the Sampling and Analysis Plan schedule must consist of monthly monitoring of common agricultural parameters in major agricultural areas, including two major storm events during the wet season (October 1 – April 30).
- 15. Storm event monitoring must be conducted within 18 hours of storm events, preferably including the first flush run-off event that results in significant increase in stream flow. For purposes of this MRP, a storm event is defined as precipitation producing onsite runoff (surface water flow) capable of creating significant ponding, erosion or other water quality problem. A

MRP No. R3-2017-0002-03 (Tier 3) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

significant storm event will generally result in greater than 1-inch of rain within a 24-hour period.

 Dischargers (individually or as part of a cooperative monitoring program) must perform receiving water quality monitoring per the Sampling and Analysis Plan and QAPP approved by the Executive Officer.

B. Surface Receiving Water Quality Reporting

Surface Receiving Water Quality Data Submittal

 Dischargers (individually or as part of a cooperative monitoring program) must submit water quality monitoring data to the Central Coast Water Board electronically, in a format specified by the Executive Officer and compatible with SWAMP/CCAMP electronic submittal guidelines, each January 1, April 1, July 1, and October 1.

Surface Receiving Water Quality Monitoring Annual Report

- By July 1, 2017, and every July 1 annually thereafter, Dischargers (individually or as part of a cooperative monitoring program) must submit an Annual Report, electronically, in a format specified by the Executive Officer including the following minimum elements:
 - a. Signed Transmittal Letter;
 - b. Title Page;
 - c. Table of Contents;
 - d. Executive Summary;e. Summary of Exceedance Reports submitted during the reporting
 - period;
 - Monitoring objectives and design;
 - g. Monitoring site descriptions and rainfall records for the time period covered;
 - h. Location of monitoring sites and map(s);
 - Tabulated results of all analyses arranged in tabular form so that the required information is readily discernible;
 - Summary of water quality data for any sites monitored as part of related monitoring programs, and used to evaluate receiving water as described in the Sampling and Analysis Plan.
 - k. Discussion of data to clearly illustrate compliance with the Order and water quality standards;
 - Discussion of short term patterns and long term trends in receiving water quality and beneficial use protection;

- Evaluation of pesticide and toxicity analyses results, and recommendation of candidate sites for Toxicity Identification Evaluations (TIEs);
- Identification of the location of any agricultural discharges observed discharging directly to surface receiving water;
- Laboratory data submitted electronically in a SWAMP/CCAMP comparable format;
- p. Sampling and analytical methods used;
- q. Copy of chain-of-custody forms;
- r. Field data sheets, signed laboratory reports, laboratory raw data;
- s. Associated laboratory and field quality control samples results;
- t. Summary of Quality Assurance Evaluation results;
- Specify the method used to obtain flow at each monitoring site during each monitoring event;
- Electronic or hard copies of photos obtained from all monitoring sites, clearly labeled with site ID and date;
- w. Conclusions.

PART 2. GROUNDWATER MONITORING AND REPORTING REQUIREMENTS

Groundwater monitoring may be conducted through a cooperative monitoring and reporting program on behalf of growers, or Dischargers may choose to conduct groundwater monitoring and reporting individually. Qualifying cooperative groundwater monitoring and reporting programs must implement the groundwater monitoring and reporting requirements described in this Order, unless otherwise approved by the Executive Officer. An interested person may seek review by the Central Coast Water Board of the Executive Officer's approval or denial of a cooperative groundwater monitoring and reporting program.

Key monitoring and reporting requirements for groundwater are shown in Table 3.

A. Groundwater Monitoring

- Dischargers must sample private domestic wells and the primary irrigation well on their farm/ranch to evaluate groundwater conditions in agricultural areas, identify areas at greatest risk for nitrogen loading and exceedance of drinking water standards, and identify priority areas for follow up actions.
- 2. Dischargers must sample at least one groundwater well for each farm/ranch on their operation, including groundwater wells that are located within the property boundary of the enrolled county assessor parcel numbers (APNs). For farms/ranches with multiple groundwater wells, Dischargers must sample all domestic wells and the primary irrigation well. For the purposes of this MRP, a "domestic well" is any well that is used or may be used for domestic

MRP.No. R3-2017-0002-03 (Tier 3) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

use purposes, including any groundwater well that is connected to a residence, workshop, or place of business that may be used for human consumption, cooking, or sanitary purposes. Groundwater monitoring parameters must include well screen interval depths (if available), general chemical parameters, and general cations and anions listed in Table 3.

- Dischargers must conduct two rounds of monitoring of required groundwater wells during calendar year 2017; one sample collected during spring (March -June) and one sample collected during fall (September - December).
- 4. Groundwater samples must be collected by a qualified third party (e.g., consultant, technician, person conducting cooperative monitoring) using proper sampling methods, chain-of-custody, and quality assurance/quality control protocols. Groundwater samples must be collected at or near the well head before the pressure tank and prior to any well head treatment. In cases where this is not possible, the water sample must be collected from a sampling point as close to the pressure tank as possible, or from a cold-water spigot located before any filters or water treatment systems.
- 5. Laboratory analyses for groundwater samples must be conducted by a State certified laboratory according to U.S. EPA approved methods; unless otherwise noted, all monitoring, sample preservation, and analyses must be performed in accordance with the latest edition of *Test Methods for Evaluating Solid Waste*, SW-846, United States Environmental Protection Agency, and analyzed as specified herein by the above analytical methods and reporting limits indicated. Certified laboratories can be found at the web link below: http://www.waterboards.ca.gov/centralcoast/water_issues/programs/ag_waive rs/docs/resources4growers/2016_04_11_labs.pdf
- 6. If a discharger determines that water in any domestic well exceeds 10 mg/L of nitrate as N, the discharger or third party must provide notice to the Central Coast Water Board within 24 hours of learning of the exceedance. For domestic wells on a Discharger's farm/ranch that exceed 10 mg/L nitrate as N, the Discharger must provide written notification to the users within 10 days of learning of the exceedance and provide written confirmation of the notification to the Central Coast Water Board.

The drinking water notification must include the statement that the water poses a human health risk due to elevated nitrate concentration, and include a warning against the use of the water for drinking or cooking. In addition, Dischargers must also provide prompt written notification to any new well users (e.g. tenants and employees with access to the affected well), whenever there is a change in occupancy. For all other domestic wells not on a Discharger's property, the Central Coast Water Board will notify the users promptly.

The drinking water notification and confirmation letters required by this Order are available to the public.

B. Groundwater Reporting

- Within 60 days of sample collection, Dischargers must coordinate with the laboratory to submit the following groundwater monitoring results and information, electronically, using the Water Board's GeoTracker electronic deliverable format (EDF):
 - a. GeoTracker Ranch Global Identification Number
 - b. Field point name (Well Name)
 - c. Field Point Class (Well Type)
 - d. Latitude
 - e. Longitude
 - f. Sample collection date
 - g. Analytical results
 - Well construction information (e.g., total depth, screened intervals, depth to water), as available
- Dischargers must submit groundwater well information required in the electronic Notice of Intent (eNOI) for each farm/ranch and update the eNOI to reflect changes in the farm/ranch information within 30 days of the change. Groundwater well information reported on the eNOI includes, but is not limited to:
 - a. Number of groundwater wells present at each farm/ranch
 - b. Identification of any groundwater wells abandoned or destroyed (including method destroyed) in compliance with the Order
 - c. Use for fertigation or chemigation
 - d. Presence of back flow prevention devices
 - e. Number of groundwater wells used for agricultural purposes f. Number of groundwater wells used for or may be used for
 - domestic use purposes (domestic wells)

C. Total Nitrogen Applied Reporting

 By March 1, 2018, and by March 1 annually thereafter, Tier 3 Dischargers growing any crop with a high potential to discharge nitrogen to groundwater must record and report total nitrogen applied for each specific crop that was irrigated and grown for commercial purposes on that farm/ranch during the preceding calendar year (January through December).

Crops with a high potential to discharge nitrogen to groundwater are: beet,

broccoli, cabbage, cauliflower, celery, Chinese cabbage (napa), collard, endive, kale, leek, lettuce (leaf and head), mustard, onion (dry and green), spinach, strawberry, pepper (fruiting), and parsley.

Total nitrogen applied must be reported on the Total Nitrogen Applied Report form as described in the Total Nitrogen Applied Report form instructions.

Total nitrogen applied includes any product containing any form or concentration of nitrogen including, but not limited to, organic and inorganic fertilizers, slow release products, compost, compost teas, manure, and extracts.

- 2. The Total Nitrogen Applied Report form includes the following information:
 - General ranch information such as GeoTracker file numbers, name, location, acres.
 - b. Nitrogen concentration of irrigation water
 - c. Nitrogen applied in pounds per acre with irrigation water
 - d. Nitrogen present in the soil
 - e. Nitrogen applied with compost and amendments
 - f. Specific crops grown
 - g. Nitrogen applied in pounds per acre with fertilizers and other materials to each specific crop grown
 - h. Crop acres of each specific crop grown
 - Whether each specific crop was grown organically or conventionally
 - j. Basis for the nitrogen applied
 - k. Explanation and comments section
 - I. Certification statement with penalty of perjury declaration
 - Meditional information regarding whether each specific crop was grown in a nursery, greenhouse, hydroponically, in containers, and similar variables.

PART 3. ANNUAL COMPLIANCE FORM

Tier 3 Dischargers must submit annual compliance information, electronically, on the Annual Compliance Form. The purpose of the electronic Annual Compliance Form is to provide information to the Central Coast Water Board to assist in the evaluation of threat to water quality from individual agricultural discharges of waste and measure progress towards water quality improvement and verify compliance with the Order and MRP. Time schedules are shown in Table 5.

A. Annual Compliance Form

MRP No. R3-2017-0002-03 (Tier 3) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

- By March 1, 2018, and updated annually thereafter by March 1, Tier 3 Dischargers must submit an Annual Compliance Form electronically, in a format specified by the Executive Officer. The electronic Annual Compliance Form includes, but is not limited to the following minimum requirements¹:
 - Question regarding consistency between the Annual Compliance Form and the electronic Notice of Intent (eNOI);
 - Information regarding type and characteristics of discharge (e.g., number of discharge points, estimated flow/volume, number of tailwater days);
 - Identification of any direct agricultural discharges to a stream, lake, estuary, bay, or ocean;
 - Identification of specific farm water quality management practices completed, in progress, and planned to address water quality impacts caused by discharges of waste including irrigation management, pesticide management, nutrient management, salinity management, stormwater management, and sediment and erosion control to achieve compliance with this Order; and identification of specific methods used, and described in the Farm Plan consistent with Order Provision 44.g., for the purposes of assessing the effectiveness of management practices implemented and the outcomes of such assessments:
 Proprietary information question and justification;
 - Proprietary mormation question and justification,
 Authorization and certification statement and declaration of penalty of perjury.

PART 5. INDIVIDUAL SURFACE WATER DISCHARGE MONITORING AND REPORTING REQUIREMENTS

Monitoring and reporting requirements for individual surface water discharge identified in Part 5.A. and Part 5.B. apply to Tier 3 Dischargers with irrigation water or stormwater discharges to surface water from an outfall. Outfalls are locations where irrigation water and stormwater exit a farm/ranch, or otherwise leave the control of the discharger, after being conveyed by pipes, ditches, constructed swales, tile drains, containment structures, or other discrete structures or features that transport the water. Discharges that have commingled with discharger from another farm/ranch are considered to have left the control of the discharger. Key monitoring and reporting requirements for individual surface water discharge are shown in Tables 4A and 4B. Time schedules are shown in Table 5.

¹ Items reported in the Annual Compliance Form are due by March 1 2018, and annually thereafter, unless otherwise specified.

MRP No. R3-2017-0002-03 (Tier 3) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

A. Individual Surface Water Discharge Monitoring

1. Tier 3 Dischargers must conduct individual surface water discharge monitoring to a) evaluate the quality of individual waste discharges, including concentration and load of waste (in kilograms per day) for appropriate parameters, b) evaluate effects of waste discharge on water quality and beneficial uses, and c) evaluate progress towards compliance with water quality improvement milestones in the Order.

Individual Sampling and Analysis Plan

- 2. By March 1, 2018, or as directed by the Executive Officer, Tier 3 Dischargers must submit an individual surface water discharge Sampling and Analysis Plan (SAAP) and QAPP to monitor individual discharges of irrigation water and stormwater that leaves their farm/ranch from an outfall. The Sampling and Analysis Plan and QAPP must be submitted to the Executive Officer; this requirement is satisfied if an approved SAAP and QAPP addressing all individual surface water discharge monitoring requirements described in this Order has been submitted pursuant to Order No.R3-2012-0011 and associated Monitoring and Reporting Programs.
- The Sampling and Analysis Plan must include the following minimum required components to monitor irrigation water and stormwater discharges:
 - Number and location of outfalls (identified with latitude and longitude or on a scaled map);
 - b. Number and location of monitoring points;
 - c. Description of typical irrigation runoff patterns;
 - d. Map of discharge and monitoring points;
 - e. Sample collection methods;
 - f. Monitoring parameters;
 - g. Monitoring schedule and frequency of monitoring events;
- The QAPP must include appropriate methods for sampling, measurement and analysis, data collection or generation, data handling, quality control activities, and documentation.
- 5. The Sampling and Analysis Plan and QAPP, and any proposed revisions are subject to approval by the Executive Officer. The Executive Officer may require modifications to the Sampling and Analysis Plan or Tier 3 Dischargers may propose Sampling and Analysis Plan modifications for Executive Officer approval, when modifications are justified to accomplish the objectives of the MRP.

Individual Surface Water Discharge Monitoring Points

- 6. Tier 3 Dischargers must select monitoring points to characterize at least 80% of the estimated maximum irrigation run-off discharge volume from each farm/ranch based on that farm's/ranch's typical discharge patterns¹, including tailwater discharges and discharges from tile drains. Sample must be taken when irrigation activity is causing maximal run-off. Load estimates will be generated by multiplying flow volume of discharge by concentration of contaminants. Tier 3 Dischargers must include at least one monitoring point from each farm/ranch which drains areas where chlorpyrifos or diazinon are applied, and monitoring of runoff or tailwater must be conducted within one week of chemical application. If discharge is not routinely present, Discharger may characterize typical run-off patterns in the Annual Report. See Table 4A for additional details.
- 7. Tier 3 Dischargers must also monitor storage ponds and other terminal surface water containment structures that collect irrigation and stormwater runoff, unless the structure is (1) part of a tail-water return system where a major portion of the water in such structure is reapplied as irrigation water, or (2) the structure is primarily a sedimentation pond by design with a short hydraulic residence time (96 hours or less) and a discharge to surface water when functioning. If multiple ponds are present, sampling must cover at least those structures that would account for 80% of the maximum storage volume of the containment features. See Table 4B for additional details. Where water is reapplied as irrigation water. Dischargers shall document reuse in the Farm Plan.

Individual Surface Water Discharge Monitoring Parameters, Frequency, and Schedule

8. Tier 3 Dischargers must conduct monitoring for parameters, laboratory analytical methods, frequency and schedule described in Tables 4A and 4B. Dischargers may utilize in-field water testing instruments/equipment as a substitute for laboratory analytical methods if the method is approved by U.S. EPA, meets reporting limits (RL) and practical quantitation limits (PQL) specifications in the MRP, and appropriate sampling methodology and quality assurance checks can be applied to ensure that QAPP standards are met to ensure accuracy of the test.

¹ The requirement to select monitoring points to characterize at least 80% of the estimated maximum irrigation run-off based on typical discharge patterns is for the purposes of attempting to collect samples that represent a majority of the volume of irrigation run-off discharged; however the Board recognizes that predetermining these locations is not always possible and that sampling results may vary. The MRP does not specify the number or location of monitoring points to provide maximum flexibility for growers to determine how many sites necessary and exact locations are given the anticipated site-specific conditions.

 Tier 3 Dischargers must initiate individual surface water discharge monitoring per an approved Sampling and Analysis Plan and QAPP, unless otherwise directed by the Executive Officer.

B. Individual Surface Water Discharge Reporting

Individual Surface Water Discharge Monitoring Data Submittal

By March 1, 2018, and annually thereafter by March 1, Tier 3 Dischargers must submit individual surface water discharge monitoring data and information to the Central Coast Water Board electronically, in a pdf format, containing at least the following items, or as otherwise approved by the Executive Officer:

- a. Electronic laboratory data
 - All reports of results must contain Ranch name and Global ID, site name(s), project contact, and date.
 - Electronic laboratory data reports of chemical results shall include analytical results, as well as associated quality assurance data including method detection limits, reporting limits, matrix spikes, matrix spike duplicates, laboratory blanks, and other quality assurance results required by the analysis method.
 - Electronic laboratory data reports of toxicity results shall include summary results comparable to those required in a CEDEN file delivery, including test and control results. For each test result, the mean, associated control performance, calculated percent of control, statistical test results and determination of toxicity, must be included. Test results must specify the control ID used to calculate statistical outcomes.
 - Field data results, including temperature, pH, conductivity, turbidity and flow measurements, any field duplicates or blanks, and field observations.
 - Calculations of un-ionized ammonia concentrations
 - Calculations of total flow and pollutant loading (for nitrate, pesticides if sampled, total ammonia, and turbidity) (include formulas);
- b. Narrative description of typical irrigation runoff patterns;
- c. Location of sampling sites and map(s);
- d. Sampling and analytical methods used;
- Specify the method used to obtain flow at each monitoring site during each monitoring event;
- f. Photos obtained from all monitoring sites, clearly labeled with location and date;
- g. Sample chain-of-custody forms do not need to be submitted but must be made available to Central Coast Water Board staff, upon request.

MRP No. R3-2017-0002-03 (Tier 3) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

PART 6. IRRIGATION AND NUTRIENT MANAGEMENT PLAN

Monitoring and reporting requirements related to the Irrigation and Nutrient Management Plan (INMP) identified in Part 6.A., and 6.B, apply to <u>Tier 3 Dischargers</u> identified by the Executive Officer that are newly enrolled in Order No. R3-2017-0002, and Tier 3 Dischargers that were subject to Irrigation and Nutrient Management Plan Requirements in Order R3-2012-0011 per MRP Order No. R3-2012-0011-03 Time schedules are shown in Table 5.

A. Irrigation and Nutrient Management Plan Monitoring

- Tier 3 Dischargers required in Order No. R3-2012-0011 to develop and initiate implementation of an Irrigation and Nutrient Management Plan (INMP) certified by a Professional Soil Scientist, Professional Agronomist, or Crop Advisor certified by the American Society of Agronomy, or similarly qualified professional, are required to update (as necessary) and implement their INMP throughout the term of this Order.
- 2. The Executive Officer will assess whether an INMP is required for new Tier 3 Dischargers that enroll in Order No. R3-2017-0002 during the term of the Order. The Executive Officer will use the criteria established in Order No. R3-2012-0011 to make this assessment. If a Tier 3 Discharger is required to develop an INMP, the Tier 3 discharger must develop and initiate implementation of an Irrigation and Nutrient Management Plan (INMP) certified by a Professional Soil Scientist, Professional Agronomist, or Crop Advisor certified by the American Society of Agronomy, or similarly qualified professional, within 18 months of the Executive Officer's assessment of the INMP requirement.
- 3. The purpose of the INMP is to budget and manage the nutrients applied to each farm/ranch considering all sources of nutrients, crop requirements, soil types, climate, and local conditions in order to minimize nitrate loading to surface water and groundwater in compliance with this Order. The professional certification of the INMP must indicate that the relevant expert has reviewed all necessary documentation and testing results, evaluated total nitrogen applied relative to typical crop nitrogen uptake and nitrogen removed at harvest, with consideration to potential nitrate loading to groundwater, and conducted field verification to ensure accuracy of reporting.
- Tier 3 Dischargers required to develop and initiate implementation an (INMP) must include the following elements in the INMP. The INMP is not submitted to the Central Coast Water Board, with the exception of the INMP Effectiveness Report:
 - a. Proof of INMP certification;
 - b. Map locating each farm/ranch;
 - Identification of crop nitrogen uptake values for use in nutrient balance calculations;

- d. Record keeping annually by either Method 1 or Method 2:
- e. To meet the requirement to record total nitrogen in the soil, dischargers may take a nitrogen soil sample (e.g. laboratory analysis or nitrate quick test) or use an alternative method to evaluate nitrogen content in soil, prior to planting or seeding the field or prior to the time of pre-sidedressing, or at an alternative time when it is most effective to determine nitrogen present in the soil that is available for the next crop and to minimize nitrate leaching to groundwater. The amount of nitrogen remaining in the soil must be accounted for as a source of nitrogen when budgeting, and the soil sample or alternative method results must be maintained in the INMP.
- f. Identification of irrigation and nutrient management practices in progress (identify start date), completed (identify completion date), and planned (identify anticipated start date) to reduce nitrate loading to groundwater to achieve compliance with this Order.
- g. Description of methods Discharger will use to verify overall effectiveness of the INMP.
- 5. Tier 3 Dischargers must evaluate the effectiveness of the INMP. Irrigation and Nutrient Management Plan effectiveness monitoring must evaluate reduction in new nitrogen¹ loading potential based on minimized fertilizer use and improved irrigation and nutrient management practices in order to minimize new nitrogen loading to surface water and groundwater. Evaluation methods used may include, but are not limited to analysis of groundwater well monitoring data or soil sample data, or analysis of trends in new nitrogen application data.

B. Irrigation and Nutrient Management Plan Reporting

1. By March 1, 2019, Tier 3 Dischargers required to develop and initiate implementation of an INMP must submit an INMP Effectiveness Report to evaluate reductions in nitrate loading to surface water and groundwater based on the implementation of irrigation and nutrient management practices in a format specified by the Executive Officer. Dischargers in the same groundwater basin or subbasin may choose to comply with this requirement as a group by submitting a single report that evaluates the overall effectiveness of the broad scale implementation of irrigation and nutrient management practices identified in individual INMPs to protect groundwater. Group efforts must use data from each farm/ranch (e.g., data from individual groundwater wells, soil samples, or nitrogen application). The INMP

¹ New nitrogen is nitrogen from fertilizers, amendments, and other nitrogen sources applied other than nitrogen present in groundwater.

Effectiveness Report must include a description of the methodology used to evaluate and verify effectiveness of the INMP.

PART 7. WATER QUALITY BUFFER PLAN

Monitoring and reporting requirements related to the Water Quality Buffer Plan identified in Part 7.A. and Part 7.B. apply to <u>Tier 3 Dischargers that have farms/ranches that</u> <u>contain or are adjacent to waterbody identified on the List of Impaired Waterbodies as</u> <u>impaired for temperature, turbidity, or sediment</u>). Time schedules are shown in Table 5.

A. Water Quality Buffer Plan

1. By 18 months following enrollment in Order No. R3-2017-0002 of a Tier 3 farm/ranch, Tier 3 Dischargers adjacent to or containing a waterbody identified on the List of Impaired Waterbodies as impaired for temperature, turbidity or sediment must submit a Water Quality Buffer Plan (WQBP) to the Executive Officer that protects the listed waterbody and its associated perennial and intermittent tributaries. The purpose of the Water Quality Buffer Plan is to prevent waste discharge, comply with water quality standards (e.g., temperature, turbidity, sediment), and protect beneficial uses in compliance with this Order and the following Basin Plan requirement:

Basin Plan (Chapter 5, p. V-13, Section V.G.4 – Erosion and Sedimentation, "A filter strip of appropriate width, and consisting of undisturbed soil and riparian vegetation or its equivalent, must be maintained, wherever possible, between significant land disturbance activities and watercourses, lakes, bays, estuaries, marshes, and other water bodies. For construction activities, minimum width of the filter strip must be thirty feet, wherever possible...."

- The Water Quality Buffer Plan must include the following or the functional equivalent, to address discharges of waste and associated water quality impairments:
 - A minimum 30 foot buffer (as measured horizontally from the top of bank on either side of the waterway, or from the high water mark of a lake and mean high tide of an estuary);
 - Any necessary increases in buffer width to adequately prevent the discharge of waste that may cause or contribute to any excursion above or outside the acceptable range for any Regional, State, or Federal numeric or narrative water quality standard (e.g., temperature, turbidity);

- c. Any buffer less than 30 feet must provide equivalent water quality protection and be justified based on an analysis of site-specific conditions and be approved by the Executive Officer;
- Identification of any alternatives implemented to comply with this requirement, that are functionally equivalent to described buffer;
- e. Schedule for implementation;
- f. Maintenance provisions to ensure water quality protection;
- g. Annual photo monitoring;
- The WQPB must be submitted using the <u>Water Quality Buffer Plan form, or, if</u> an alternative to the WQBP is submitted, in a format approved by the Executive Officer.
- 3. By March 1, 2019, Tier 3 Dischargers that submitted a WQBP pursuant to Order No. R3-2012-0011 or Order No. R3-2017-0002, are required to update (as necessary) and implement their WQBP, and annually submit a WQBP Status Report of their WQBP implementation using the Water Quality Buffer Plan form, or, if an alternative to the WQBP was submitted, an Alternative to WQBP Status Report, electronically, in a format approved by the Executive Officer.

PART 8. GENERAL MONITORING AND REPORTING REQUIREMENTS

A. Submittal of Technical Reports

 Dischargers must submit reports in a format specified by the Executive Officer (reports will be submitted electronically, unless otherwise specified by the Executive Officer). A transmittal letter must accompany each report, containing the following penalty of perjury statement signed by the Discharger or the Discharger's authorized agent:

"In compliance with Water Code §13267, I certify under penalty of perjury that this document and all attachments were prepared by me, or under my direction or supervision following a system designed to assure that qualified personnel properly gather and evaluate the information submitted. To the best of my knowledge and belief, this document and all attachments are true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment".

If the Discharger asserts that all or a portion of a report submitted pursuant to this Order is subject to an exemption from public disclosure (e.g. trade secrets or secret processes), the Discharger must provide an explanation of how those portions of the reports are exempt from public disclosure. The -20-

Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

MRP No. R3-2017-0002-03 (Tier 3)

Discharger must clearly indicate on the cover of the report (typically an electronic submittal) that the Discharger asserts that all or a portion of the report is exempt from public disclosure, submit a complete report with those portions that are asserted to be exempt in redacted form, submit separately (in a separate electronic file) unredacted pages (to be maintained separately by staff). The Central Coast Water Board staff will determine whether any such report or portion of a report qualifies for an exemption from public disclosure. If the Central Coast Water Board staff disagrees with the asserted exemption from public disclosure, the Central Coast Water Board staff disagrees with the asserted notify the Discharger prior to making such report or portions of such report available for public inspection.

B. Central Coast Water Board Authority

- Monitoring reports are required pursuant to section 13267 of the California Water Code. Pursuant to section 13268 of the Water Code, a violation of a request made pursuant to section 13267 may subject you to civil liability of up to \$1000 per day.
- The Water Board needs the required information to determine compliance with Order No.R3-2017-0002. The evidence supporting these requirements is included in the findings of Order No.R3-2017-0002.

John M. Robertson Executive Officer

Date

Table 1. Major Waterbodies in Agricultural Areas¹

Hydrologic Waterbody Name SubArea		Hydrologic SubArea	Waterbody Name	
30510	10 Pajaro River		Quail Creek	
30510	Salsipuedes Creek	30920	Salinas Reclamation Canal	
30510	Watsonville Slough	31022	Chorro Creek	
30510	Watsonville Creek ²	31023	Los Osos Creek	
30510	Beach Road Ditch ²	31023	Warden Creek	
30530	Carnadero Creek	31024	San Luis Obispo Creek	
30530	Furlong Creek ²	31024	Prefumo Creek	
30530	Llagas Creek	31031	Arroyo Grande Creek	
30530	Miller's Canal	31031	Los Berros Creek	
30530	San Juan Creek	31210	Bradley Canyon Creek	
30530	Tesquisquita Slough	31210	Bradley Channel	
30600	Moro Cojo Slough	31210	Green Valley Creek	
30910	Alisal Slough	31210	Main Street Canal	
30910	Blanco Drain	31210	Orcutt Solomon Creek	
30910	Old Salinas River	31210	Oso Flaco Creek	
30910	Salinas River (below Gonzales Rd.)	31210	Little Oso Flaco Creek	
30920 Salinas River (above Gonzales Rd. and below Nacimiento R.)		31210	Santa Maria River	
30910	Santa Rita Creek ²	31310	San Antonio Creek ²	
30910	Tembladero Slough		Santa Ynez River	
30920	Alisal Creek	31531	Bell Creek	
30920	Chualar Creek	31531	Glenn Annie Creek	
30920	Espinosa Slough	31531	Los Carneros Creek ²	
30920	Gabilan Creek	31534	Arroyo Paredon Creek	
30920	Natividad Creek		Franklin Creek	

At a minimum, monitoring sites must be included for these waterbodies in agricultural areas, unless otherwise approved by the Executive Officer. Monitoring sites may be proposed for addition or modification to better assess the impacts of waste discharges from irrigated lands to surface water. Dischargers choosing to comply with surface receiving water quality monitoring, individually (not part of a cooperative monitoring program) must only monitor sites for waterbodies receiving the discharge.

March 8, 2017

Table 2. Surface Receiving Water Quality Monitoring Parameters

-22-

Parameters and Tests	RL ³	Monitoring Frequency ¹
Photo Monitoring		
Upstream and downstream photographs at monitoring location		With every monitoring event
WATER COLUMN SAMPLING	;	
Physical Parameters and Ger		
Chemistry		
Flow (field measure) (CFS) following SWAMP field SOP ⁹	.25	Monthly, including 2 stormwater events
pH (field measure)	0.1	
Electrical Conductivity (field measure) (µS/cm)	2.5	
Dissolved Oxygen (field measure) (mg/L)	0.1	
Temperature (field measure) (°C)	0.1	
Turbidity (NTU)	0.5	
Total Dissolved Solids (mg/L)	10	
Total Suspended Solids (mg/L)	0.5	
Nutrients		
Total Nitrogen (mg/L)	0.5	Monthly, including 2 stormwater events
Nitrate + Nitrite (as N) (mg/L)	0.1	
Total Ammonia (mg/L) Unionized Ammonia (calculated value, mg/L))	0.1	:
Total Phosphorus (as P) (mg/L)	0.02	
Soluble Orthophosphate (mg/L)	0.01	
Water column chlorophyll a (µg/L)	1.0	
Algae cover, Floating Mats, % coverage		
Algae cover, Attached, % coverage	-	
Water Column Toxicity Test		
Algae - Selenastrum capricornutum (96-hour chronic; Method1003.0 in EPA/821/R- 02/013)	•	4 times each year, twice in dry season, twice in wet season
Water Flea – Ceriodaphnia dubia (7-day chronic; Method 1002.0 in EPA/821/R-02/013)		
Midge - Chironomus spp. (96- hour acute; Alternate test species in EPA 821-R-02-012)		

-23-

MRP No. R3-2017-0002-03 (Tier 3) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

Parameters and Tests	RL	Monitoring Frequency ¹
Toxicity Identification Evaluation	-	
(TIE)		As directed by Executive Officer
Pesticides ² /Herbicides (µg/L)	
Organophosphate		
Pesticides		
Azinphos-methyl	0.02	2 times in both 2017 and 2018, once in dry season and once in wet season of each year, concurrent with water toxicity monitoring
Chlorpyrifos	0.005	
Diazinon	0.005	
Dichlorvos	0.01	
Dimethoate	0.01	
Dimeton-s	0.005	
Disulfoton (Disyton)	0.005	
Malathion	0.005	
Methamidophos	0.02	
Methidathion	0.02	
Parathion-methyl	0.02	
Phorate	0.01	
Phosmet	0.02	
Neonicotinoids		
Thiamethoxam	.002	
Imidacloprid	.002	
Thiacloprid	.002	
Dinotefuran	.006	
Acetamiprid	.01	
Clothianidin	.02	
Herbicides		
Atrazine	0.05	
Atrazine Cyanazine	0.05	
Diuron	0.05	
Glyphosate	2.0	
Linuron	0.1	
Paraguat	0.20	
Simazine	0.05	
Trifluralin	0.05	
Metals (µg/L)		
Arsenic (total) 6,7	0.3	2 times in both 2017 and 2018, once in dry season and
4		once in wet season of each year, concurrent with water toxicity monitoring
Boron (total) 6,7	10	=
Cadmium (total & dissolved) 4.5.7	0.01	

MRP No. R3-2017-0002-03 (Tier 3) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

-24-

March 8, 2017

Parameters and Tests	RL ³	Monitoring Frequency ¹
Copper (total and dissolved) 4.7	0.01	
Lead (total and dissolved) 4,7	0.01	-
Nickel (total and dissolved) 4,7	0.02	
Molybdenum (total) ⁷	1	
Selenium (total) ⁷	0.30	
Zinc (total and dissolved) 4.5,7	0.10	-
Other (µg/L)		
Total Phenolic Compounds [®]	5	2 times in 2017, once in spring (April-May) and once in fall (August-September)
Hardness (mg/L as CaCO3)	1	
Total Organic Carbon (ug/L)	0.6	-
SEDIMENT SAMPLING		
Sediment Toxicity - Hyalella		2 times each year, once in spring (April-May) and once in
azteca 10-day static renewal (EPA, 2000)		fall (August-September)
Pyrethroid Pesticides in		
Sediment (µg/kg) Gamma-cyhalothrin	2	2 times in both 2017 and 2018, once in spring (April-May)
Gamma-cynaiothrin	2	and once in fall (August-September) of each year, concurrent with sediment toxicity sampling
Lambda-cyhalothrin	2	-
Bifenthrin	2	
Beta-cyfluthrin	2	
Cyfluthrin	2	
Esfenvalerate	2	
Permethrin	2	
Cypermethrin	2	-
Danitol	2	
Fenvalerate Fluvalinate	2	-
r havain halo	~	
Other Monitoring in		
Sediment		
Chlorpyrifos (µg/kg)	2	-
Total Organic Carbon	0.01%	-
Sediment Grain Size Analysis	1%	-

I Monitoring is ongoing through all five years of the Order, unless otherwise specified. Monitoring frequency may be used as a guide for developing alternative Sampling and Analysis Plan. Pesticide list may be modified based on specific pesticide use in Central Coast Region. Analytes on this list must be reported, at a minimum. ³Reporting Limit, taken from SWAMP where applicable.

⁴ Holmgren, Meyer, Cheney and Daniels. 1993. Cadmium, Lead, Zinc, Copper and Nickel in Agricultural Soils of the United States. J. of Environ. Quality 22:335-348. ⁵Sax and Lewis, ed. 1987. Hawley's Condensed Chemical Dictionary. 11th ed. New York: Van Nostrand Reinhold Co., 1987. Zinc arsenate is an insecticide. <u>http://www.coastalaigro.com/products/labels/9%25BORON.pdf</u>; Boron is applied directly or as a component of tertilisers or polet addiced.

fertilizers as a plant nutrient. Madramootoo, Johnston, Willardson, eds. 1997. Management of Agricultural Drainage Water Quality. International Commission on Irrigation and Drainage. U.N. FAO. SBN 92-6-104058.3. "http://cat.inist.fr/?aModele=afficheN&cpsidt=14074525; Phenols are breakdown products of herbicides and

pesticides. Phenols can be directly toxic and cause endocrine disruption. "See SWAMP field measures SOP, p. 17 mg/L – milligrams per liter; ug/L – micrograms per liter; ug/kg – micrograms per kilogram;

NTU - Nephelometric Turbidity Units; CFS - cubic feet per second;

Table 3. Groundwater Monitoring Parameters

Parameter	RL	Analytical Method ³	Units
pH	0.1		pH Units
Specific	2.5	Field or Laboratory Measurement	µS/cm
Conductance		EPA General Methods	
Total Dissolved	10		
Solids			
Total Alkalinity	1	EPA Method 310.1 or 310.2	1
as CaCO ₃		EPA Method 310.1 or 310.2	
Calcium	0.05]
Magnesium	0.02	General Cations ¹	
Sodium	0.1	EPA 200.7, 200.8, 200.9	mg/L
Potassium	0.1		-
Sulfate (SO ₄)	1.0		1
Chloride	0.1		
Nitrate + Nitrite	0.1	General Anions EPA Method 300 or EPA Method 353.2	
(as N) ²			
or			
Nitrate as N			

¹General chemistry parameters (major cations and anions) represent geochemistry of water bearing zone and assist in evaluating quality assurance/quality control of groundwater monitoring and laboratory analysis. ²The MRP allows analysis of "nitrate plus nitrite" to represent nitrate concentrations (as N). The "nitrate plus nitrite"

analysis allows for extended laboratory holding times and relieves the Discharger of meeting the short holding time required for nitrate.

Dischargers may use alternative analytical methods approved by EPA. RL – Reporting Limit; µS/cm – micro siemens per centimeter

Table 4A. Individual Discharge Monitoring for Tailwater, Tile drain, and Stormwater Discharges

Parameter	Analytical Method ¹	Maximum PQL	Units	Min Monitoring Frequency
Discharge Flow or Volume	Field Measure		CFS	
Approximate Duration of Flow	Calculation		hours/month	(a) (d)
Temperature (water)	Field Measure	0.1	^o Celsius	
pH	Field Measure	0.1	pH units	1

-26-

Electrical Conductivity	Field Measure	100	µS/cm	
Turbidity	SM 2130B, EPA 180.1	1	NTUs	
Nitrate + Nitrite (as N)	EPA 300.1, EPA 353.2	0.1	mg/L	
Ammonia	SM 4500 NH3, EPA 350.3	0.1	mg/L	
Chlorpyrifos ² Diazinon ²	EPA 8141A, EPA 614	0.02	ug/L	
Ceriodaphnia Toxicity (96-hr acute)	EPA-821-R-02-012	NA	% Survival	(b) (c) (d)
Hyalella Toxicity in Water (96-hr acute)	EPA-821-R-02-012	NA	% Survival	

acute) In-field water testing instruments/equipment as a substitute for laboratory analysis if the method is approved by EPA, meets RL/PQL specifications in the MRP, and appropriate sampling methodology and quality assurance checks can be applied to ensure that QAPP standards are met to ensure accuracy of the test. If chlorpyrifos or diazinon is used at the farm/ranch, otherwise does not apply. The Executive Officer may require

monitoring of other pesticides based on results of downstream receiving water monitoring.

(a) Two times per year during primary irrigation season for farms/ranches less than or equal to 500 acres, and four times per year during primary irrigation season for farms/ranches greater than 500 acres. Executive Officer may reduce sampling frequency based on water quality improvements. (b) Once per year during primary irrigation season for farms/ranches less than or equal to 500 acres, and two times per

year during primary irrigation season for farms/ranches greater than 500 acres.

(c) Sample must be collected within one week of chemical application, if chemical is applied on farm/ranch;
(d) Once per year during wet season (October – March) for farms/ranches less than or equal to 500 acres, and two times per year during wet season for farms/ranches greater than 500 acres, within 18 hours of major storm events; CFS – Cubic feet per second; NTU – Nephelometric turbidity unit; PQL – Practical Quantitation Limit; NA - Not applicable

Table 4B. Individual Discharge Monitoring for Tailwater Ponds and other Surface Containment Features

Parameter	Analytical Method ¹	Maximum PQL	Units	Minimum Monitoring Frequency	
Volume of Pond	Field Measure	1	Gallons	(a) (d)	
Nitrate + Nitrite (as N)	EPA 300.1, EPA 353.2	50	mg/L		

In-field water testing instruments/equipment as a substitute for laboratory analysis if the method is approved by EPA, meets RL/PQL specifications in the MRP, and appropriate sampling methodology and quality assurance checks can be applied to ensure that QAPP standards are met to ensure accuracy of the test.

(a) Four times per year during primary irrigation season; Executive Officer may reduce monitoring frequency based on water quality improvements.

(d) Two times per year during wet season (October - March, within 18 hours of major storm events)

Table 5. Tier 3 - Time Schedule for Key Monitoring and Reporting Requirements (MRPs)

REQUIREMENT	TIME SCHEDULE ¹
Submit Sampling And Analysis Plan and Quality Assurance Project Plan (SAAP/QAPP) for Surface	By March 1, 2018, or as directed by the Executive Officer; satisfied if an approved
Receiving Water Quality Monitoring (individually or	SAAP/QAPP has been submitted pursuant

MRP No. R3-2017-0002-03 (Tier 3) Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands

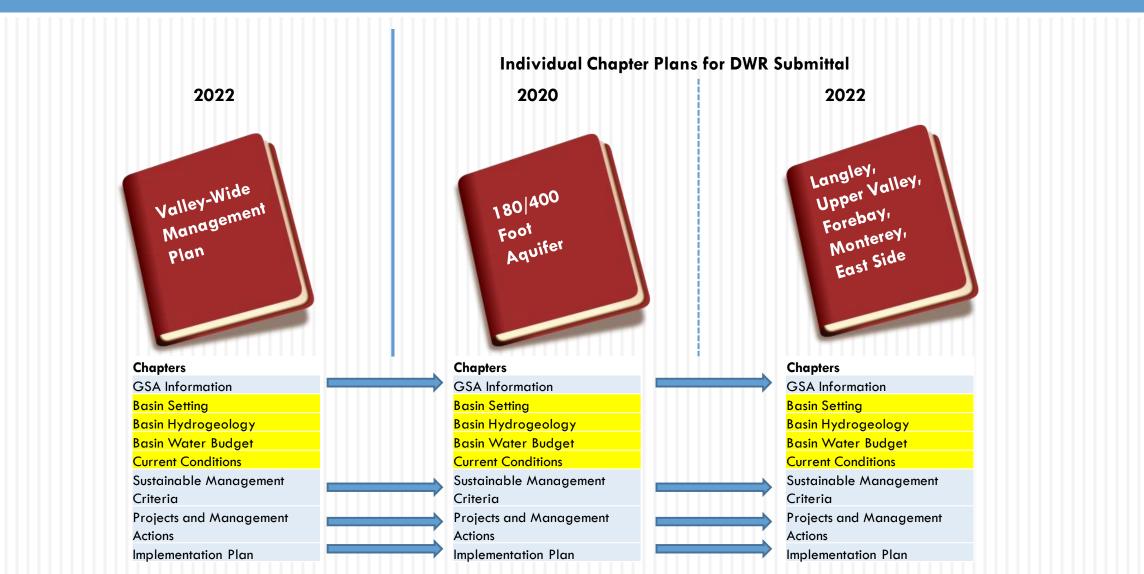
-27-

through cooperative monitoring program)	to Order No. R3-2012-0011 and associated MRPs		
Initiate surface receiving water quality monitoring (individually or through cooperative monitoring program)	Per an approved SAAP and QAPP		
Submit surface receiving water quality monitoring data (individually or through cooperative monitoring program)	Each January 1, April 1, July 1, and October 1		
Submit surface receiving water quality Annual Monitoring Report (individually or through cooperative monitoring program)	By July 1 2017; annually thereafter by July 1		
Initiate monitoring of groundwater wells	First sample from March-June 2017, second sample from September-December 2017		
Submit individual surface water discharge SAAP and QAPP	By March 1, 2018 or as directed by the Executive Officer; waived if an approved SAAP and QAPP has been submitted and being implemented pursuant to Order No. R3-2012-0011.		
Initiate individual surface water discharge monitoring	As described in an approved SAAP and QAPP		
Submit individual surface water discharge monitoring data	March 1, 2018, and every March 1 annually thereafter		
Submit electronic Annual Compliance Form	March 1, 2018 and every March 1 annually thereafter		
Submit groundwater monitoring results	Within 60 days of the sample collection		
Submit Water Quality Buffer Plan or alternative	Within 18 months of enrolling new Tier 3		
Submit Water Guarry Burlet Plan or alternative	farm/ranch in Order		
Submit Status Report on Water Quality Buffer Plan or alternative	March 1, 2019		
Tier 3 Dischargers with farms/ranches growing high			
Report total nitrogen applied on the Total Nitrogen Applied form	March 1, 2018 and every March 1 annually thereafter		
Submit INMP Effectiveness Report	March 1, 2019		

¹Dates are relative to adoption of this Order, unless otherwise specified.

SALINAS VALLEY GROUNDWATER BASIN

CHAPTERS 7 REVIEW


Prepared for Salinas Valley Basin Groundwater Sustainability Agency

Report Outline

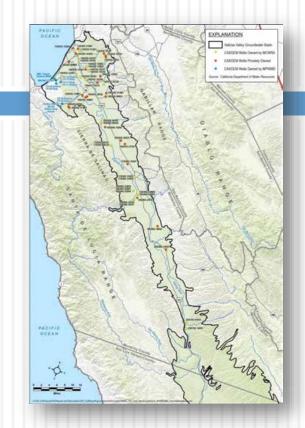
- □ CHAPTER 1.
- Introduction
- □ CHAPTER 2.
- □ CHAPTER 3.
- □ CHAPTER 4.
- □ CHAPTER 5.
- □ CHAPTER 6.
- □ CHAPTER 7.
- □ CHAPTER 8.
- □ CHAPTER 9.
- □ CHAPTER 10.
- □ CHAPTER 11.
 - Ch. 11.1

- Agency Information Description of Plan Area Hydrogeologic Conceptual Model
- **Existing Groundwater Conditions**
- Water Budgets
- Monitoring Networks
- Sustainable Management Criteria
- **Projects and Management Actions**
- Plan Implementation
- Notice and Communications
 - **Communications and Engagement Plan**

Two Sets of Chapters

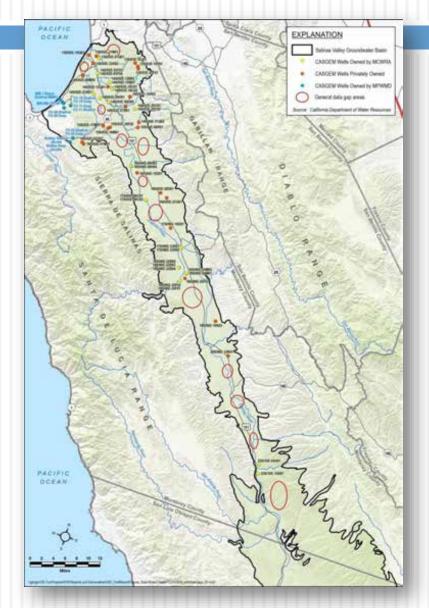
Chapter 7: Monitoring Networks

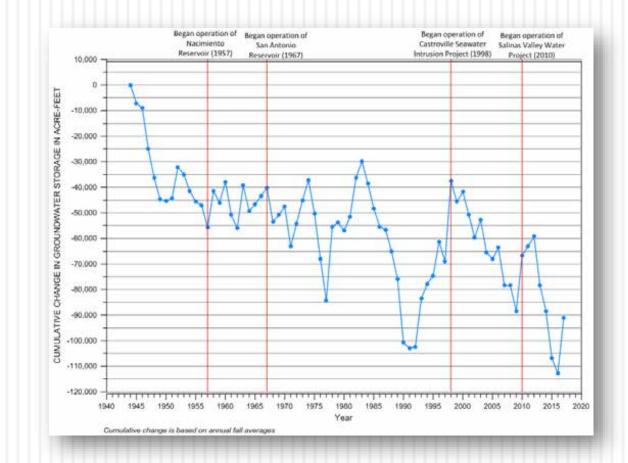
- Required by regulation
- A network for each of the six Sustainability Indicators
- One network can address more than one Sustainability Indicator
- Current networks based on existing monitoring sites
 - Data must be transferred to DWR and will become public data
 - Monitoring site information will become public data
- Future network expansion
 - No strict guidance on data gaps


Monitoring Networks: Guiding Principles

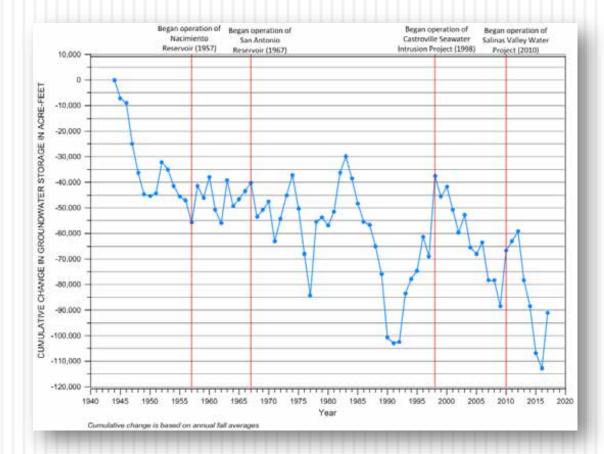
- Use existing monitoring networks
 - Do not initiate new monitoring programs if possible
- Maintain consistency with previous monitoring
 - Seawater intrusion
- Expand existing monitoring programs using existing monitoring sites if possible
- Adopt existing monitoring protocols

Groundwater Elevations Monitoring

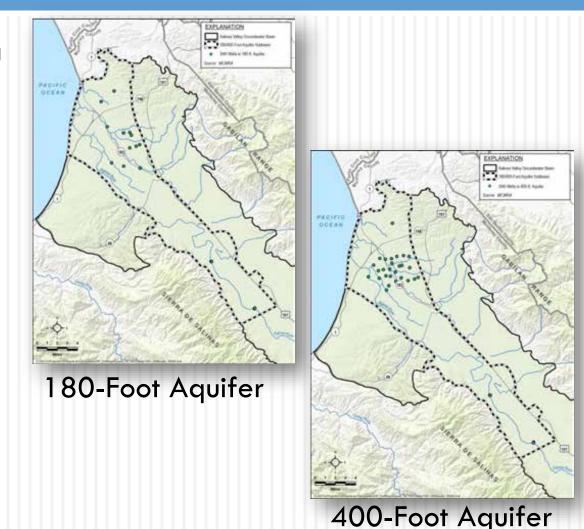

- Must monitor groundwater elevations
- Use existing wells primarily from CASGEM system
 - Already publicly available data


Groundwater Elevations Monitoring Data Gaps

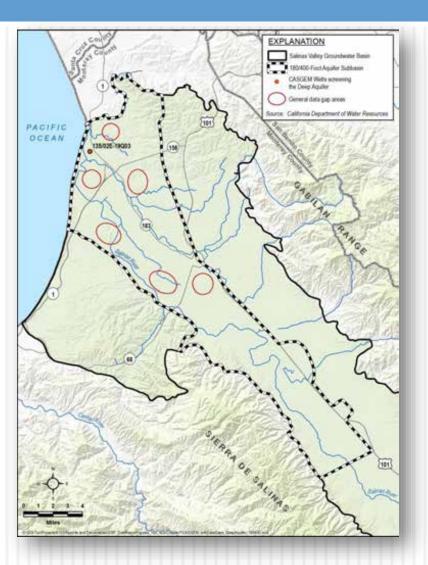
- Gaps will be filled in first years of implementation
 - Prefer to use existing wells
 - Optionally install new wells
- Notable gaps
 - Deep aquifer in 180/400
 - Forebay and Upper Valley
- Data gaps map will be updated over time


Change in Storage Monitoring

- Must monitor annual groundwater withdrawals (pumping)
 - Change in storage is a bit of a misnomer
- Use MCWRA's existing reporting requirements for all wells with greater than 3" discharge
- Use data reported to California
 Division of Drinking Water
- Estimate crop usage for nonreported agricultural pumping
- Estimate residential pumping


Change in Storage Monitoring Data Gaps

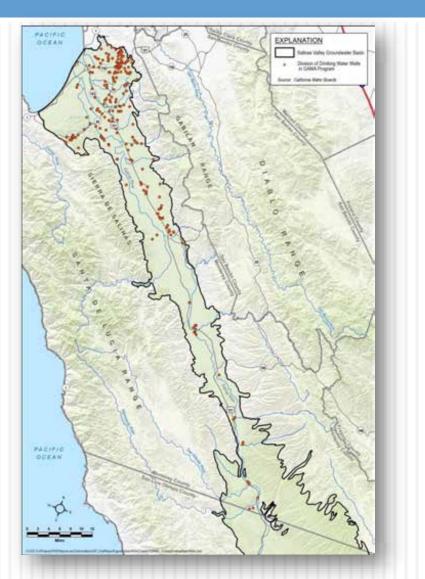
- Develop good estimates of total number of wells
- Reporting to MCWRA only covers zones 2, 2A, and 2B
 - Potentially expand the area of reporting
- Develop estimates of total number of de-minimis pumpers
- Develop a meter calibration program


Seawater Intrusion Monitoring

- Adopting MCWRA monitoring system and protocols
- Some data currently used by MCWRA are collected under confidentiality agreements

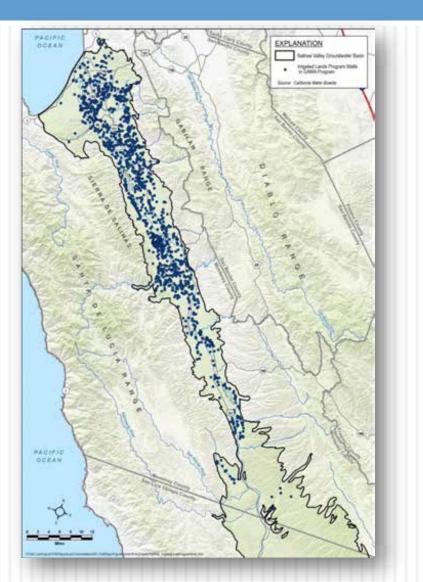
Seawater Intrusion Monitoring Data Gaps

- Deep aquifer has no current seawater intrusion monitoring
- Use the same network proposed for the Deep aquifer groundwater elevation monitoring



Groundwater Quality Monitoring

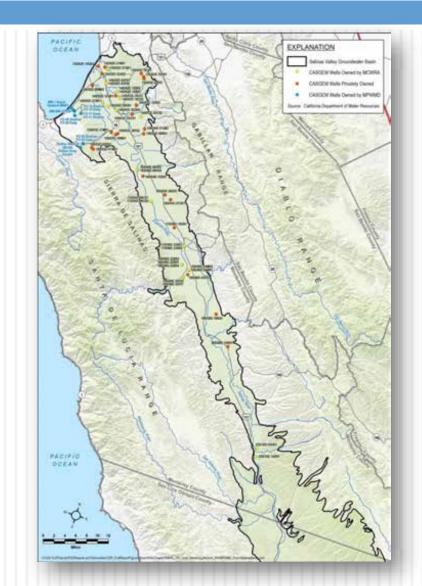
- 12
- Must monitor groundwater quality in <u>SUPPLY</u> wells.
- Use groundwater quality data reported to State Division of Drinking Water
- Use groundwater quality reported to County Health
- Use groundwater quality reported under IRLP
- □ NOT NECESSARY TO USE ALL WELLS


Groundwater Quality Monitoring - Potable

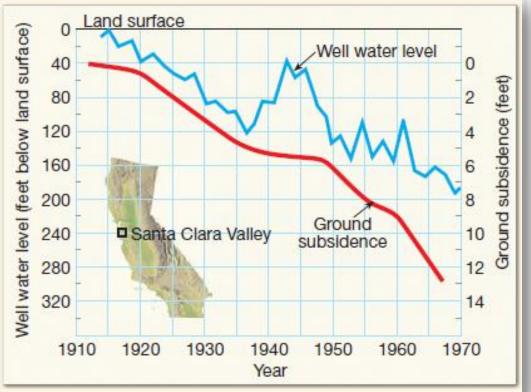
- Current map shows only State Division of Drinking Water
- We have requested data from County Department of Health
- Will likely reduce the number of Representative Monitoring Sites once we have all sites mapped

Groundwater Quality Monitoring - Agricultural

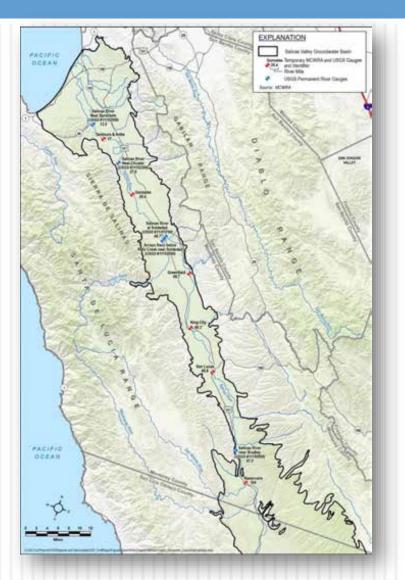
- Map shows existing wells with data associated with ILRP
- Will modify this map when Ag.
 Order 4.0 is initiated
- Will reduce the number of Representative Monitoring Sites once we have all sites mapped


Groundwater Quality Monitoring Data Gaps

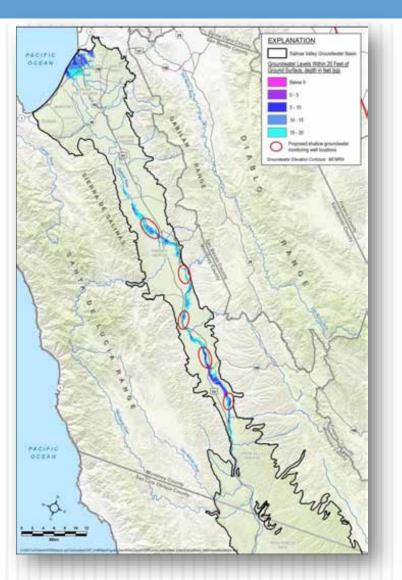
- None identified
- Adding monitoring wells is not applicable because the metric of success is based on supply wells


Subsidence Monitoring

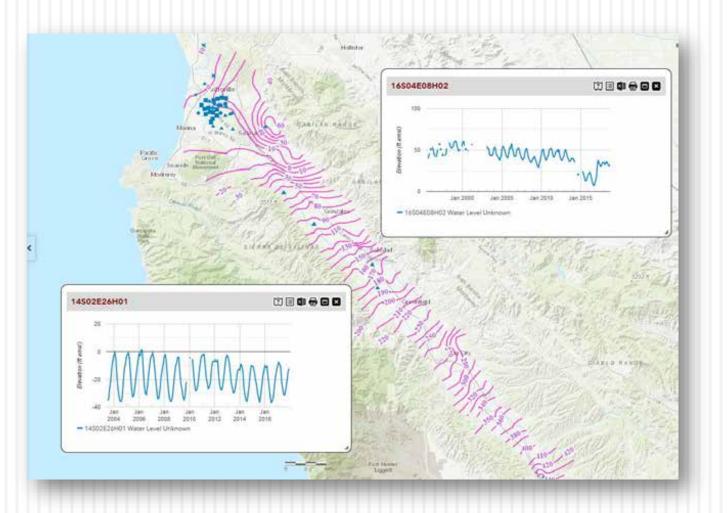
- Must monitor changes in land surface elevations
- Use groundwater elevations as a proxy
 - Establish relationship between groundwater elevation and subsidence
 - Generally, as long as groundwater elevations stay above historical lows, we will not induce additional subsidence
- Therefore, the subsidence monitoring network is identical to the groundwater elevation monitoring network


Subsidence Monitoring Data Gaps

 Establish relationship between groundwater levels and subsidence
 This may be conceptual/theoretical if there are no available data


Depletion of Interconnected Surface Water Monitoring

- Must measure rate of volume of surface water depletion in interconnected areas
 - Difficult to physically measure
- Approach
 - Estimate depletions using SVIHM model
 - Check model against stream gauge data
 - Verify model accuracy with shallow wells


Depletion of Interconnected Surface Water Monitoring Data Gaps

- Shallow groundwater wells adjacent to the Salinas River
 - Verifies model accuracy
 - Only in areas where the River is interconnected
 - Use existing wells if available

Data Management System

- Start simple
 - Store required data
 - Provide electronic submissions to DWR
- Working on making data publicly available

April 4, 2019 Planning Committee Comments

Mr. Williams estimated ³/₄ of an acre foot per residence for rural residential pumping for interior, exterior use. Director Brennan believes this sounds high when considering the Monterey Peninsula's usage. Mr. Williams stated that the estimate may need to be set by area.

Director Brennan asked about metering ag use. Tamara Voss stated that the groundwater extraction program has been in place since 1992 for Zones 2a and 2b, and requires every well in that zone report annually on monthly pumping. Director Brennan felt that would be good to describe in the GSP. Director McIntye stated it is described, but some edits could enhance the description.

Nancy Isakson stated that the separate study used to estimate residential pumping should be reconciled with the General Plan information.

Howard Franklin stated that 3% to 7% are not reporting under the GEMS program, including some large pumpers.

In response to Nancy Isakson, Tamara Voss stated some of the 3% to 7% of non reporters includes some non-ag, and some of the ag non reporters change due to inability to report because of tenancy changes, e.g.

Mr. Williams stated that the reporting is required for areas 2a or 2b only, but there is an opportunity to expand on that reporting that would mainly impact the upper valley and the forebay to some degree In response to Heather Lukacs, Mr. Williams stated he would include overlays of the GSA boundaries for Zones 2a and 2B from one of the earlier chapters. Comments indicate a desire for better estimates.

In response to Chair McIntyre, Mr. Williams stated arial imagery may provide good estimates for non reporting areas .

Director Brennan would like to discuss metering. Nancy Isakson liked Director Brennan's idea to discuss the analysis, and good points were brought up on how options to metering work. Mr. Williams stated that this is a data gap and will be addressed over the first 2 years of implementation by analysis of various methodologies and benefits of each one.

Howard Franklin stated that there is no ordinance that water quality data be confidential. Until recently, the Agency letter to property and well owners stated that they would keep the data confidential, but they will reconsider this provision going forward. Director Brennan stated that this should be considered to fill the data gap.

Mr. Williams referenced slide 12 regarding use of groundwater water quality reporting, including data from the Irrigated Lands Regulatory Program (ILRP). Heather Lukacs will provide the info that is available online thru 2017. Mr. Williams stated that the map would change under Ag Order 4.0, and then they would go through the process for identifying representative monitoring sites.

Mr. Williams referred to the subsidence monitoring slide and stated that we have to establish the relationship between groundwater and subsidence. Director Brennan stated that an earlier chapter discussed establishing a GIS system in South County for potential subsidence, so that may need to be changed. Howard Franklin and Heather Lukacs stated correlation may be difficult. Mr. Williams stated it is a qualitative statement and the Agency may need to provide quantitative information in the next couple of years.

Regarding the slide regarding depletion of interconnected surface water monitoring data gap, Mr. Williams stated this would be verified with data from shallow groundwater wells next to the river in the southern part of the Valley. Chair Mcintyre offered to make data available from his shallow wells in that area.

Chair McIntyre invited additional comments that follow:

Director Brennan asked about an undeveloped protocol, referencing the statement that ag groundwater users will work with the County to develop a protocol to share data under Ordinance 3717. Mr. Williams responded this is only for the sharing of data, so he will rewrite that.

Chair McIntyre referenced 7.3 page 15 on the extraction reporting. More explanation would be better as to why not all growers are reporting for the Ag growers/community. Is it possible to highlight redundancies in the ISP and GSP for the DWR's review, e.g.

Director Secondo confirmed that the ISP would not be submitted to the DWR. Director Secondo confirmed it should say "most growers" or "most high capacity water users."

Director Secondo asked about agreements to address any property owners' concerns about WRA's overstepping their purpose for being on the property. Mr. Williams indicated he will identify this as an issue.

Jocelyn referenced on 7.5, usage of MCL and expressed concern that the DWR used MCL as its basis for deciding medium, low, or high use. Mr. Williams stated this would be clarified in Chapter 8.

Tom Virsik pointed out that there is a two-page difference in the Appendices in the ISP and GSP.

EXCERPT OF ADVISORY COMMITTEE MEETING APRIL 18, 2019. MONTEREY COUNTY OFFICES, 1441 SCHILLING PLACE, SALINAS, CAYENNE ROOM

4.c. <u>Review and comment and consider recommendation to the Board of Directors regarding</u> release of draft Groundwater Sustainability Plan Chapter 7, Monitoring Network

Derrik Williams, Groundwater Sustainability Plan (GSP) consultant presented a PowerPoint.

Harold Wolgamott stated they report to the State monthly on shallow wells. Mr. Williams stated he would like to look at those reports.

Norm Groot inquired about duplication of water quality monitoring already required. Mr. Williams stated that he would like to integrate this information, and he would appreciate Mr. Groot's assistance in filling in some of the data gaps.

In response to Tom Ward, Mr. Williams stated well meter reading to confirm pumping data is an option. However, he has not included meter reading because this option will come up as an in one to two months when discussing management actions.

Nancy Isakson thought that they were required to provide data for the deep aquifer. Mr. Williams stated that Howard Franklin has confirmed there is a new ordinance that public reporting is required.

Ms. Isakson stated there were informative comments at the Planning Committee meeting regarding the different ways ag growers measure for pumping. She would like information on the different methods and accuracy. Mr. Williams stated that this would come up in one to two months. By law, pumping has to be reported.

Tom Adcock stated that public water systems have a safety issue about publicly disclosing location of water facilities. Mr. Williams will discuss the concern for privacy regarding precise locations with the Department of Water Resources (DWR).

Brian Frus asked how critical is the data that the Water Resources Agency is currently collecting confidentially but may become public. Mr. Williams stated that he does not believe that any of the significant amount of data will be public unless explicitly authorized.

Howard Franklin stated that the data collection essentially has been constrained to seawater intrusion in the coastal area due to funding constraints. This year, they will not include the confidentiality clause in the request for data. Water quality has diminished since 1941 but there is no measurable subsidence.

Howard Franklin stated that estimating surface water depletion due to groundwater pumping for may be difficult for highly managed rivers. He believes groundwater levels and storage is a good approach, but consideration should be given to the historical simulation being worked on. Derrik Williams stated that this does not say that this would be our primary approach to determining whether we are maintaining current storage.

Committee members Harold Wolgemutt and Greg Williams left the meeting at 3 p.m.

May Nguyen stated the Environmental Justice Coalition developed a water quality mapping tool that they have shared with Derrik Williams for integration with data for this plan. It is available online and will be rolled out the end of this month. In response to Ms. Nguyen, Mr. Williams stated they have not received a response from the Monterey County Health Department for the requested data, and he noted Mr. Adcock's question as to whether well location should be publicized.

Jeff Johnson stated Mr. Williams mentioned that the current assumption of the relationship between subsidence and depletion needs to be demonstrated. They would like a revision to eliminate the assumption until ample hydrographic and satellite data is available. He referred to the information on data providers that was previously provided to draw our own Salinas Valley graph.

Mr. Johnson referenced Section 7.21 and stated that new CASGEM wells will likely be needed. The last paragraph suggests uncertainty about monitoring. They suggest this is an opportunity for the GSA to recommend that wells be added and that monitoring remain with the Water Resources Agency. Mr. Williams stated that multiple agencies can provide data to the State under CASGEM.

James Bishop, Central Coast Regional Water Quality Control Board Geologist, stated that the Regional Board is working with the ag community on regional monitoring for water quality. It would be great for the Regional Board to work with the GSA to avoid duplicate monitoring networks.

In response to Diane Kukol, Mr. Williams estimated that the timing for working together on the Chapter would be near future. He supports the integration of monitoring, but the GSP must be submitted by January 2020. The monitoring system in the Plan may change within a year, which is not problematic. Coordination sooner than that would be great, but the SVBGSA schedule should not drive them.

Heather Lukacs, Community Water Center, stated that San Luis Obispo should be able to provide data in a quick time frame. In response to Ms. Lukacs, Mr. Williams stated they can differentiate between types of wells, but it was rough to differentiate at the time the data was downloaded for the draft chapters.

In response to Horacio Amezquita, Howard Franklin stated that water elevation monitoring information is on the Water Resources Agency's website.

In response to Diane Kukol, Regional Water Board Geologist, Mr. Williams stated that they do not have better data than the Irrigated Lands Regulatory Program (ILRP) data. Our requirement is to look at the number of supply wells and see what is happening to them. Our job is to ensure our management does not make it worse. SGMA could be expanded in the future to include monitoring water quality, but that is not advisable during these first couple of years of the legislation.

Heather Lukacs stated that not much is known about shallow aquifers used for drinking water, and this should be considered a data gap. Private domestic wells should be incorporated into the monitoring networks, especially because they count as supply wells.

The Advisory Committee voted unanimously to recommend the Board consider and release draft Chapter 7, Monitoring Network, for public comment.