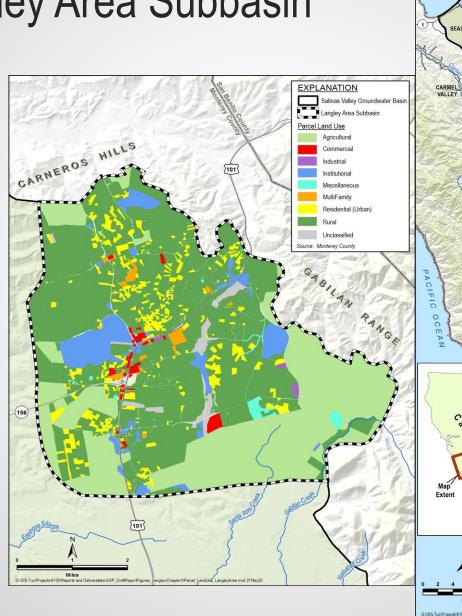
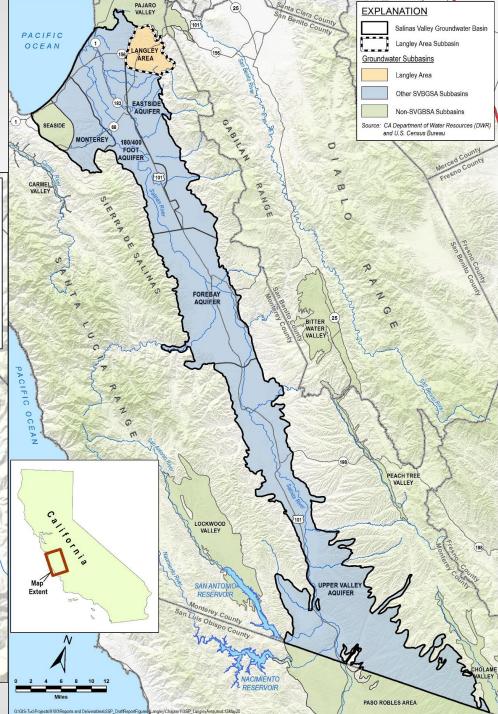
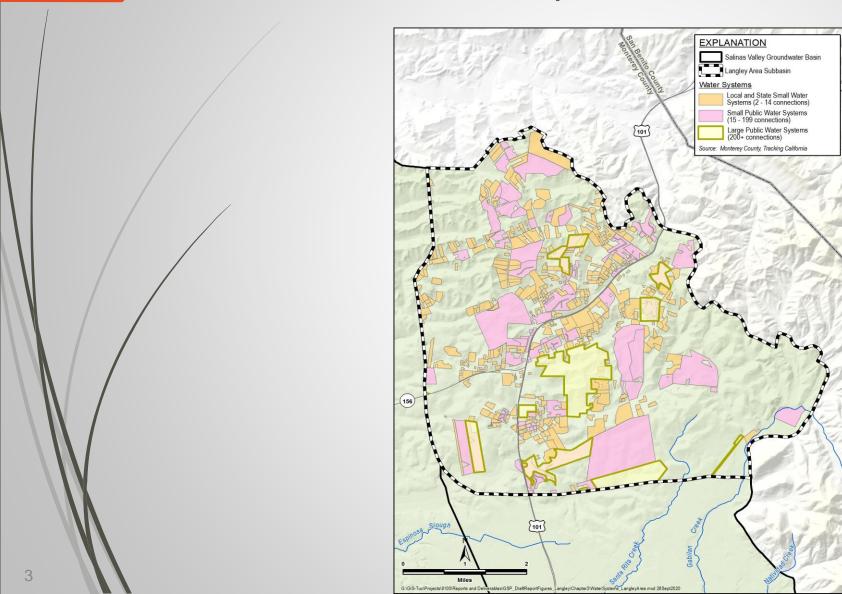
Salinas Valley Basin GSA

Langley GSP Overview

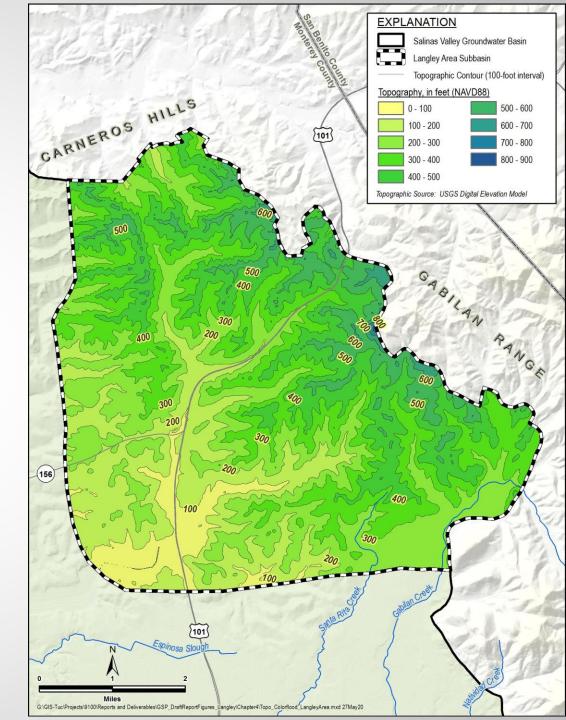
Presented to SVBGSA Advisory Committee June 17, 2021

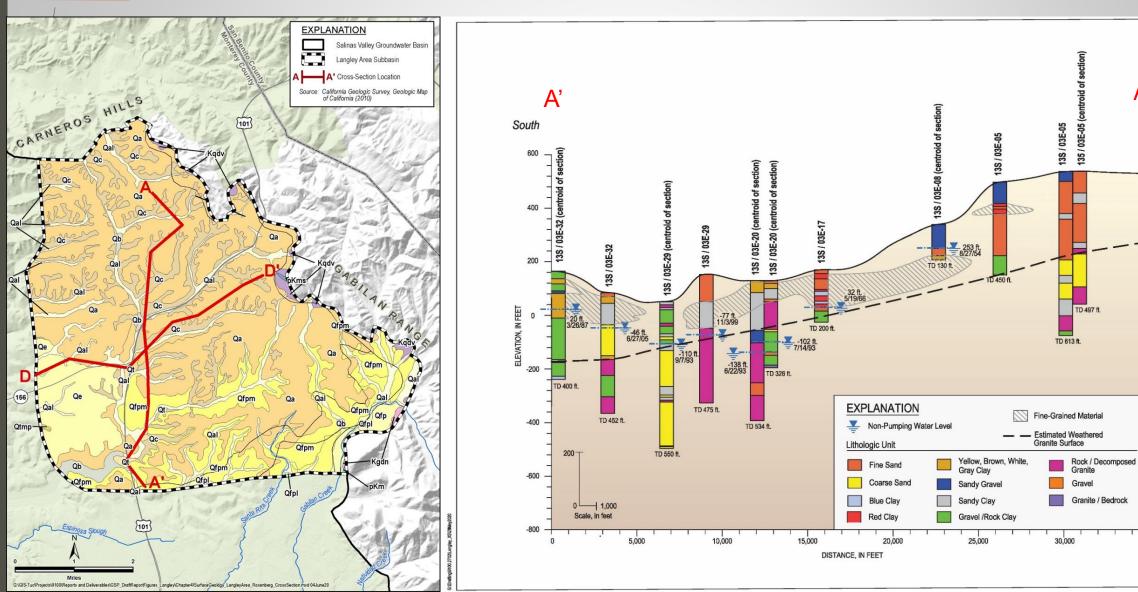

Prepared by




Langley Area Subbasin

- **17,600** acres
- Most landdesignated rural(8,862 acres)

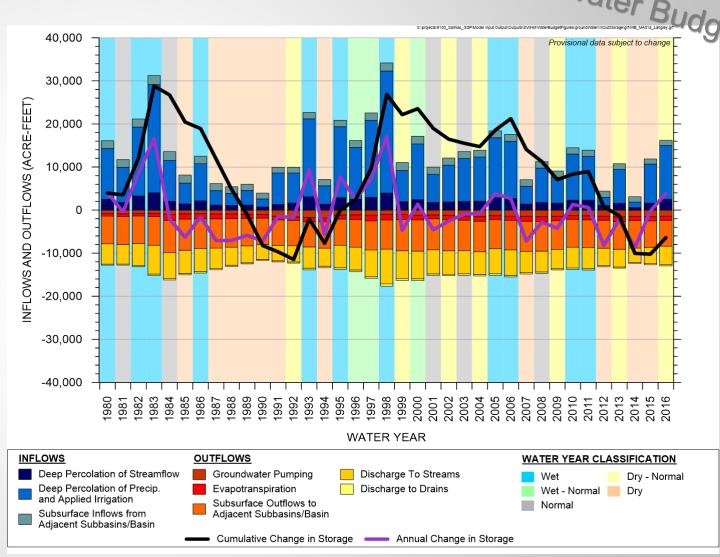

Communities Dependent on Groundwater



Basin Setting - Topography

- Hilly area
- Not like the other subbasins
- Underlain by fractured granite bedrock

Hydrogeologic Conceptual Model

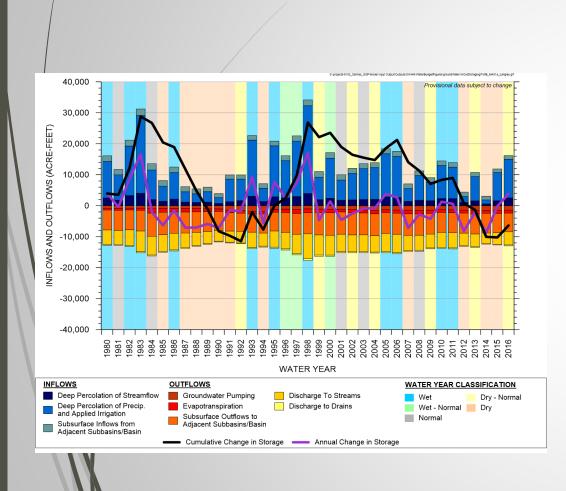

North

Groundwater Budget

	Historical Average (WY 1980-2016)	2030	2070
Groundwater Pumping	-1,200	-1,300	-1,400
Flows from Drains	-300	-600	-600
Net Stream Exchange	-3,000	-900	-1,100
Deep Percolation of Precipitation & Applied Irrigation	9,800	10,600	11,600
Net Flow from Eastside	-1,100	-900	-900
Net Flow from Outside Areas	100	100	100
Net Flow from Pajaro	-300	-300	-300
Net Flow from 180/400- Foot	-3,700	-4,100	-4,300
Groundwater Evapotranspiration	-1,000	-1,900	-2,100
Net Storage Gain (+) or Loss (-)	-700	800	1,000

Provisional data subject to change.
Units are acre-feet per year.
Negative values indicate a loss of groundwater.

Sustainable Yield = pumping + change in storage


Updated Water Budget

	Historical Sustainable Yield	2030 Projected Sustainable Yield	2070 Projected Sustainable Yield
Groundwater Pumping	1,200	1,300	1,400
Seawater Intrusion	0	0	0
Change in Storage	-700	800	1,000
Projected Sustainable Yield	500	2,100	2,400
% Pumping Change	58% decrease	62% increase	71% increase

Provisional data subject to change.
Units are acre-feet per year.
Negative values indicate a loss of groundwater.

Sustainable yield from Model is in the process of being adapted based on historical extraction data

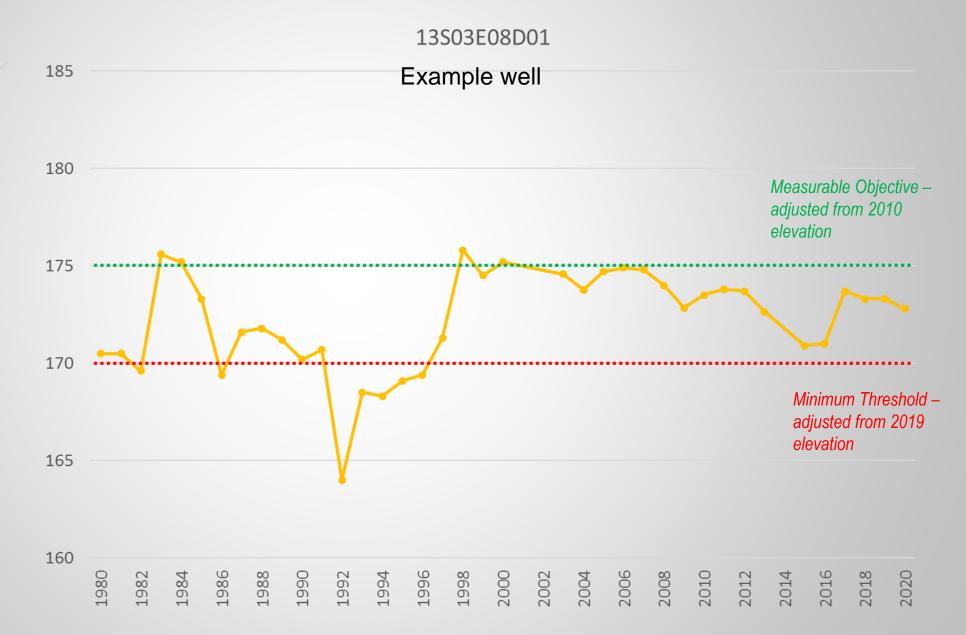
Groundwater Budget

- Overall there is no chronic decline in water levels and Langley is roughly in balance
- Historical and future are both averages of many years/hydrologic periods
- Current is a snapshot and does not tell us much since it only views change from one year to the next
- Future change in storage is likely overestimated because it starts from a low point.
- Future water budget incorporates average climate change, but does not represent short-term climate change effects

Groundwater conditions/SMC – Groundwater Levels

1. Chronic lowering of groundwater levels SMC

Measurable Objective (MO):


2010 groundwater elevations adjusted based on well-specific elevation assessments.

Minimum Threshold (MT):

2019 groundwater elevations adjusted based on well-specific elevation assessments.

Undesirable Result:

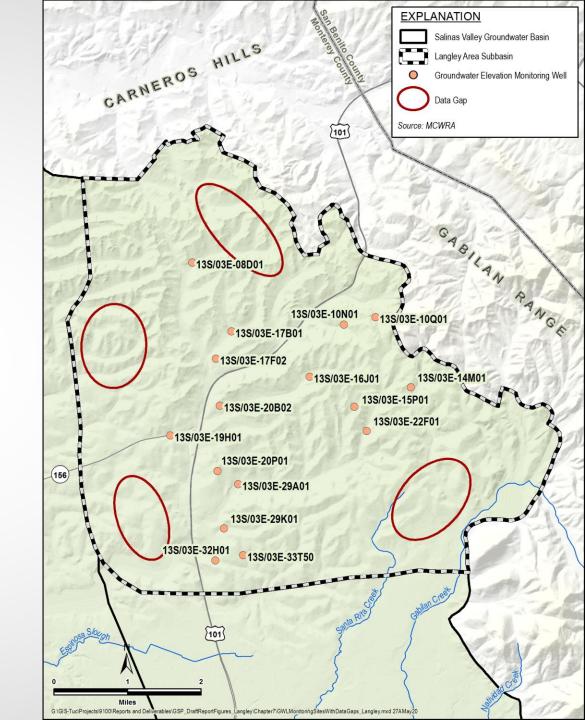
More than 15% of groundwater elevation minimum thresholds are exceeded.

Groundwater conditions/SMC – Groundwater Levels

1. Chronic lowering of groundwater levels SMC

Measurable Objective (MO):

2010 groundwater elevations adjusted based on well-specific elevation assessments.


Minimum Threshold (MT):

2019 groundwater elevations adjusted based on well-specific elevation assessments.

Undesirable Result:

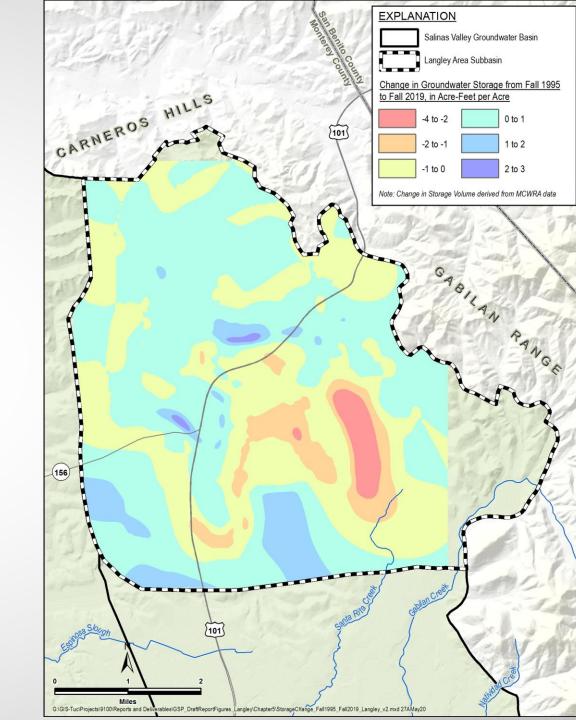
More than 15% of groundwater elevation minimum thresholds are exceeded.

All wells currently have water levels between the MO and MT

Groundwater conditions/SMC – Groundwater Storage

2. Reduction in Groundwater Storage

Measurable Objective (MO):


Established by proxy using groundwater elevations. Set to the same as groundwater levels measurable objectives.

Minimum Threshold (MT):

Established by proxy using groundwater elevations. Set to the same as groundwater levels minimum thresholds.

Undesirable Result:

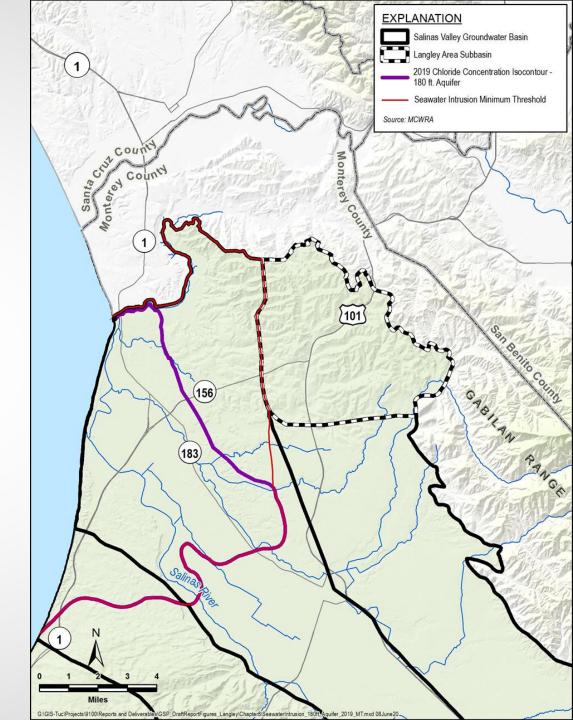
More than 15% of groundwater elevation minimum thresholds are exceeded..

3. Seawater Intrusion

Measurable Objective (MO):

The 500 mg/L chloride isocontour at the Subbasin boundary, resulting in no seawater intrusion in the Langley Subbasin.

Minimum Threshold (MT):


Same as the measurable objective

Undesirable Result:

Any exceedance of the minimum threshold, resulting in mapped seawater intrusion within the Subbasin boundary.

Groundwater conditions/SMC – Seawater Intrusion

- No seawater intrusion in the subbasin
- Minimum threshold is at the subbasin boundary

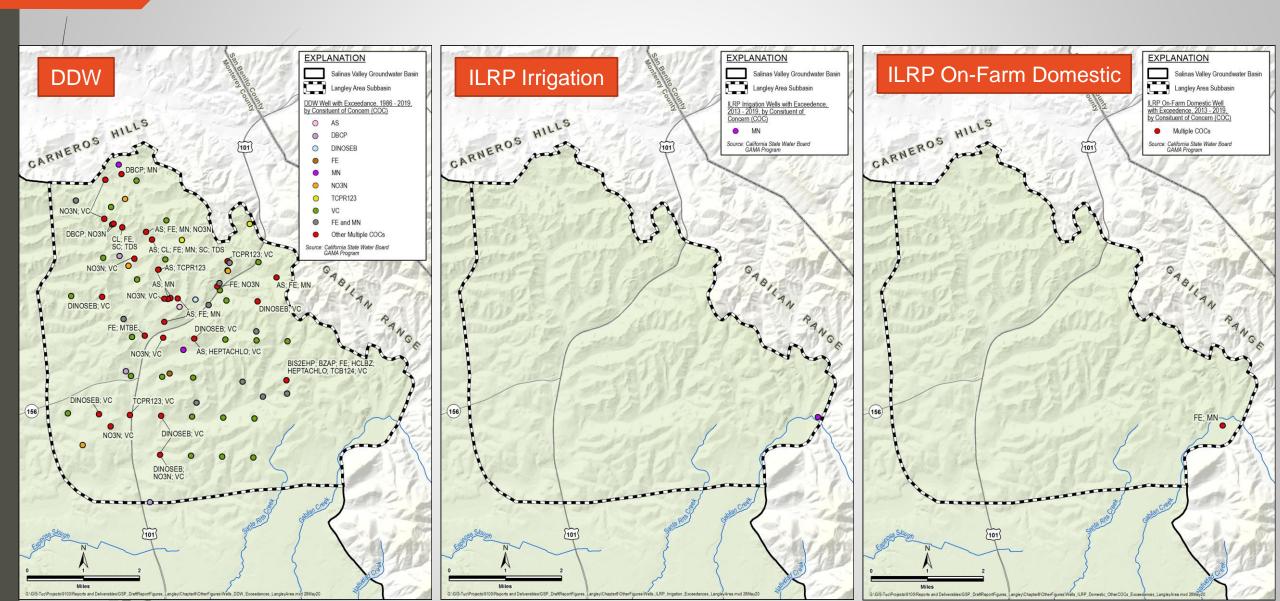
4. Degraded Groundwater Quality

Measurable Objective (MO)

Zero additional exceedances of either the regulatory drinking water standards (potable supply wells) or the Basin Plan objectives (irrigation supply wells) beyond those observed in 2019 for groundwater quality constituents of concern.

Minimum Threshold (MT)

Same as the measurable objective


Undesirable Result:

The minimum threshold is exceeded as a direct result of projects or management actions taken as part of GSP implementation.

Groundwater conditions/ SMC Water Quality

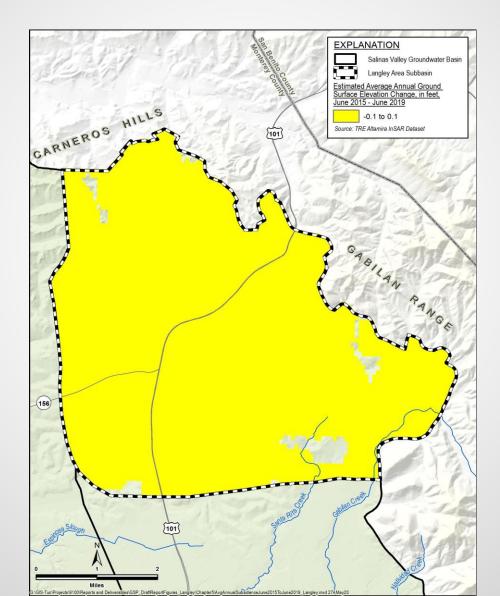
Constituent of Concern (COC)	Number of Wells Sampled for COC	Minimum Threshold/Measurable Objective – Number of Wells Exceeding Regulatory Standard from latest sample					
DDW Wells							
Arsenic	86	3					
Di(2-ethylhexyl) phthalate	56	1					
Benzo(a)Pyrene	56	1					
Chloride	76	2					
1,2 Dibromo-3- chloropropane	33	6					
Dinoseb	87	8					
Iron	78	17					
Hexachlorobenzene	31	1					
Heptachlor	31	2					
Manganese	76	15					
Methyl-tert-butyl ether (MTBE)	85	1					
Nitrate (as nitrogen)	164	14					
Specific Conductance	88	2					
1,2,4-Trichlorobenzene	84	1					
1,2,3-Trichloropropane	89	6					
Total Dissolved Solids	76	2					
Vinyl Chloride	188	88					
ILRP On-Farm Domestic Wells							
Iron	1	1					
Manganese	1	1					
	ILRP Irrigation We	lls					
anganese 9 1							
	J						

Groundwater conditions/SMC – Current Water Quality Exceedance Maps

Groundwater conditions/SMC – Subsidence

5. Subsidence

Measurable Objective (MO):


Zero net long-term subsidence, with no more than 0.1 foot per year of estimated land movement to account for InSAR errors

Minimum Threshold (MT):

Same as the measurable objective

Undesirable Result:

There is an exceedance of minimum thresholds for subsidence.

Negligible current subsidence

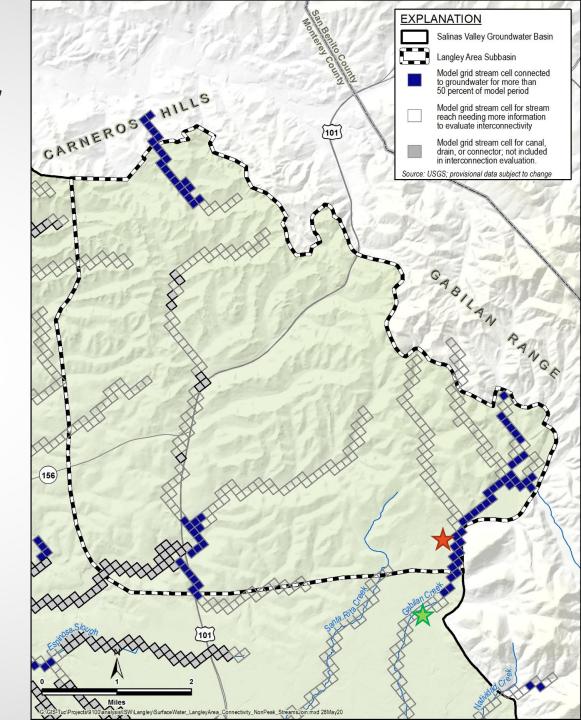
Future subsidence due to groundwater conditions is unlikely

Groundwater conditions/SMC – Interconnected Surface Water

6. Depletion of Interconnected surface water (ISW)

Measurable Objective (MO):

Established by proxy using shallow groundwater elevations observed in 2010 near locations of ISW, adjusted based on well-specific elevation assessments.


Minimum Threshold (MT):

Established by proxy using shallow groundwater elevations observed in 2019 near locations of ISW, adjusted based on well-specific elevation assessments.

Undesirable Result:

There is an exceedance of the minimum threshold in a shallow groundwater monitoring well used to monitor ISW.

- No interconnected surface water monitoring points yet
- One shallow well will be added on Gabilan Creek (orange star) and will be paired with USGS gauge in Eastside (green star)

Summary of Current Conditions

- Langley Area Subbasin has not historically been in overdraft
- From 1980 to 2016, the basin was in overdraft during only 9 years
- Calculation of the mitigation of overdraft is not needed at this time
- Given that the Subbasin's extraction is currently close to the sustainable yield, this chapter includes a robust set of potential projects and management actions that could be undertaken if needed

Projects & Management Actions

RECHARGE PROJECTS

- Decentralized Residential Recharge Projects
- Decentralized Stormwater Recharge
- MAR Overland Flow
- Surface Water Diversion from Gabilan Creek

DEMAND MANAGEMENT

Pumping Allocations and Controls

Projects & Management Actions

CROSS BOUNDARY PROJECTS

- Floodplain Enhancement and Recharge
- CSIP Expansion

IMPLEMENTATION ACTIONS

- Well Registration
- GEMS Expansion
- Local Groundwater Elevation Trigger
- Domestic Water Partnership

Decentralized In Lieu Recharge Projects

Rain barrels:

- If 500 of the 3000 households attend a workshop and 15% implement a 5000-gallon rain barrel to provide water in lieu of pumping, it would result in 4 AF/yr. benefit
- 5 workshops with 100 households each would cost about \$50,000
- GSA cost would be \$50,000, not including any monetary incentive
- Cost to homeowner to implement a 5000-gallon rain barrel is \$10,000, which would be \$15,000 if used over 25 years
- Costs and benefits are variable depending on # workshops, size of rain barrels implemented, number of rain barrels implemented, if other in lieu recharge features are implemented

Laundry to Landscape:

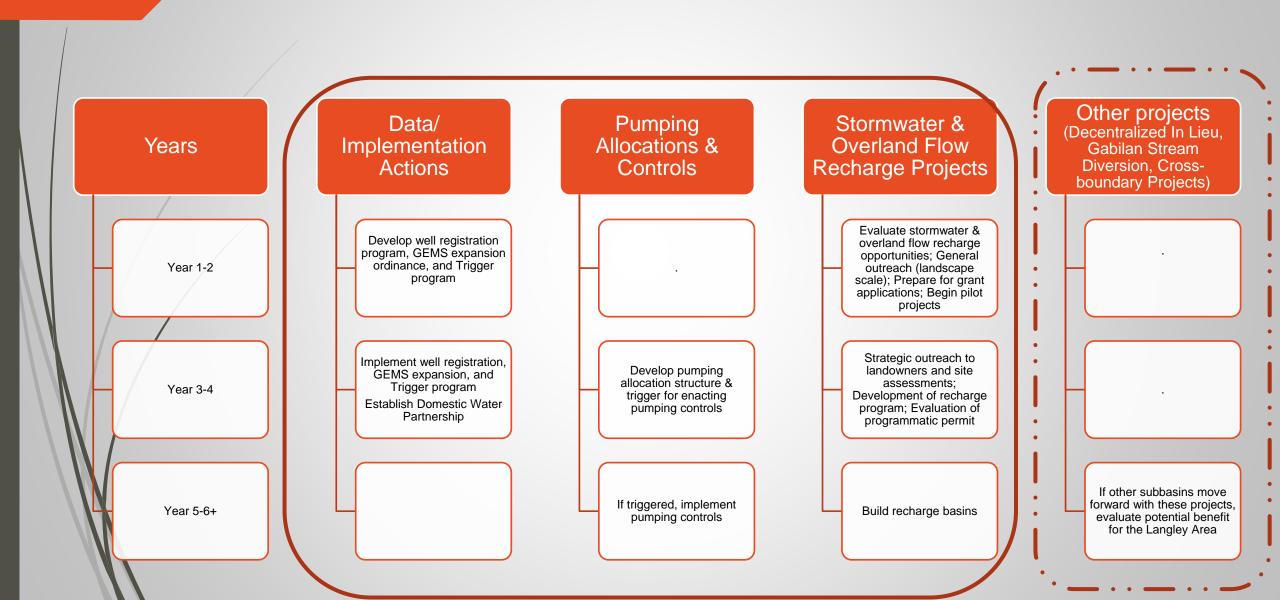
- If 500 of the 3000 households attend a workshop and 15% implement a laundry-to-landscape system to provide water in lieu of pumping, it would result in **0.94 AF/yr. benefit**
- ► 5 workshops with 100 households each would cost about \$50,000
- GSA cost would be \$50,000, not including any monetary incentive
- Cost to homeowner to implement a laundry-to-landscape system is \$2,100, which would be approximately \$15,960 if used over 25 years
- Costs and benefits are variable depending on # workshops, amount of laundry done, and number implemented

Decentralized Stormwater Capture

- Incentivizing installation of stormwater capture features for groundwater recharge
- Stormwater is directed to small recharge basins, flood plains, and bioswales for recharge, or for immediate irrigation application
- Project benefit: increased groundwater elevations and storage
 - Secondary flood hazard mitigation benefits
 - Stormwater capture off 1% of Langley land area (176 acres) would result in up to ~279 AF/yr.
- GSA program cost (to do outreach, preliminary studies, and encourage implementation): still refining estimated cost
- Cost to implement: varies widely, very site-specific
- Example of potential project under this program: stormwater capture from Prunedale shopping center
 - 9 AF/yr captured for recharge
 - Capital cost = \$3.3 million

Pumping Allocations and Controls

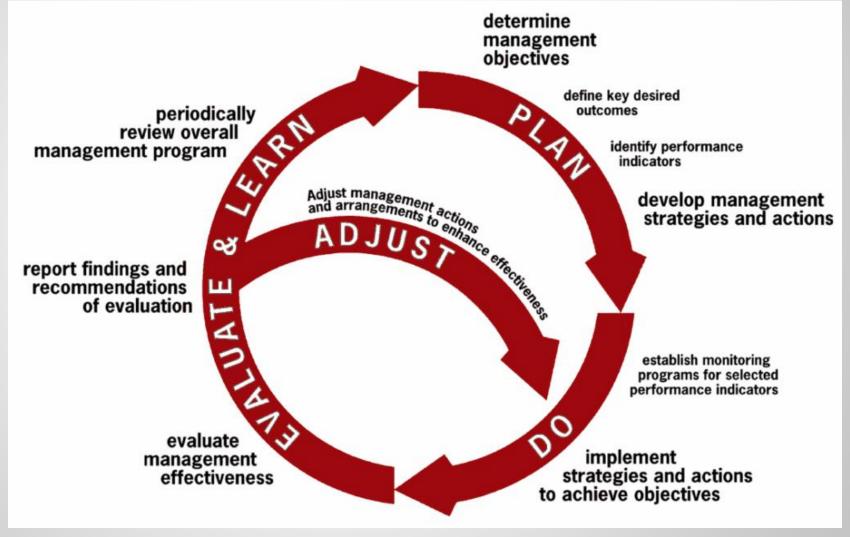
- Management action to enable Subbasin to pump within sustainable yield
- Not water rights, but rather an approach to divide up sustainable yield among beneficial users
- They can be used to:
 - Underpin management actions that manage pumping
 - Generate funding for projects and management actions
 - Incentivize water conservation and/or recharge projects
- Subbasin Committee preferred establishing the allocation structure based on a per connection allocation for small parcels and per acreage for large parcels. If sustainable yield is reduced, all users reduce proportionately except de minimis users


Summary of Projects & Management Actions

	Project Number	Name	Description	Project Benefits	Quantification of Project Benefits	Cost
ı	RECHARG	SE PROJECTS				
	A1	Decentralized Residential Recharge Projects	Small-scale projects initiated by homeowners and business owners, including rooftop rainwater harvesting, rain gardens, and graywater systems	Less domestic groundwater use, Groundwater recharge	If 75 households install 5000- gallon rain barrels, up to 4 AF/yr. rainwater harvested, and 1.6 AF/yr. from graywater systems installed by 75 houses	Cost to GSA (not for homeowner implementation or incentives): \$50,000 for 5 workshops on rainwater harvesting and \$50,000 for 5 workshops on graywater reuse
	A2	Decentralized Stormwater Recharge	Medium-scale bioswales and recharge basins on non-agricultural land	Groundwater recharge, less flooding,	If 1% of the Subbasin is converted from an area of runoff to an area of recharge, 279 AF/yr.	Cost to GSA (not for implementation or incentives): \$150,000 - \$200,000 to encourage projects through outreach, site assessments, and assistance with planning
ı	A3	Managed Aquifer Recharge with Overland Flow	Constructs basins for managed aquifer recharge of overland flow before it reaches streams	Groundwater recharge, less stormwater and erosion, more regular surface temperature	400 AF/yr. in groundwater recharge	Capital Cost: \$4,128,000 Unit Cost: \$870/AF
	A4	Surface Water Diversion from Gabilan Creek	Build a new facility on Gabilan Creek that would be allowed to divert water when streamflow is high	Collects streamflow that would otherwise be lost to the ocean	On average, 350 AF/yr. of excess streamflow is saved for later use.	Capital Cost: \$5,477,000 Unit Cost: \$1,800/AF

Summary of Projects & Management Actions

Project Number	Name	Description	Project Benefits	Quantification of Project Benefits	Cost
DEMAND	AND MANAGEMENT				
B1	Pumping Allocations and Control	Proactively determines how extraction should be fairly divided and controlled if needed.	Decreases extraction	Range of potential project benefits	Approximately \$300,000 for establishment of pumping allocations and pumping controls
CROSS BO	UNDARY PROJECTS				
C1	Floodplain Enhancement and Stormwater Recharge	Restore creeks and floodplains to slow the flow of water	Groundwater recharge, less erosion, less flooding	, 0	Multi-subbasin Capital Cost: \$12,596,000 Unit Cost: \$400/AF
C2	Castroville Seawater Intrusion Project (CSIP) Expansion	Expand CSIP into the southwest corner of the Langley Area Subbasin	Less groundwater pumping	Multi-subbasin: 9,900 AF/yr. of recycled and river water provided for irrigation	Multi-subbasin Capital Cost: \$73,366,000 Unit Cost: \$630/AF
IMPLEMEN	TATION ACTIONS				
D1	Dry Well Notification System	Develop a system for well owners to notify the GSA if their wells go dry. Refer those owners to resources to assess and improve their water supplies. Form a working group if concerning patterns emerge.	Support affected well owners with analysis of groundwater elevation decline	N/A – Implementation Action	Not estimated at this time
D2	Groundwater Elevation Management System (GEMS) Expansion	Update current GEMS program, by collecting groundwater extraction data from wells in areas not currently covered by GEMS and enhance data collection	Better informed decisions	N/A – Implementation Action	Not estimated at this time
D3	Well Registration	Register all production wells. Monitor flowmeters on all non- <i>de minimis</i> wells.	Better informed decisions, more management options	N/A – Implementation Action	Not estimated at this time
D4	Domestic Water	Form a working group for different agencies to	Better access to quality	N/A – Implementation	Not estimated at this


Langley P&MA Road Map

Implementation Schedule

Adaptive Management

